Fysisk inaktivitet
– konsekvenser og sammenhænge

Motions- og Ernæringsrådet
Fysisk inaktivitet
– konsekvenser og sammenhænge

En rapport fra Motions- og Ernæringsrådet

Af
Bente Kiens
Nina Beyer
Søren Brage
Lars Hyldestrup
Laila Susanne Ottesen
Kristian Overgaard
Bente Klarlund Pedersen
Lis Puggaard
Fysisk inaktivitet – konsekvenser og sammenhænge

Grafisk produktion: Boje & Mobeck as

Publikationsår: 2007

Publ. nr. 3 – Motions- og Ernæringsrådet

Pris: 85,- kr. ekskl. moms.
Indholdsfortegnelse

Forord .. 9

Resumé ... 11

Summary .. 13

Kommissorium ... 15

1. Fysisk inaktivitet .. 17

1.1 Introduktion .. 17

1.2 Metodologiske problemer ... 18

1.3 Definition af fysisk inaktivitet 19

1.4 Evidens for anbefalingen om 30 minutter om dagen 21

1.4.1 Konditionsbegreber .. 22

1.4.2 Stofskiftekondition ... 22

1.4.3 Fysisk aktivitet og arbejdsintensitet 23

1.4.4 Regelmæssig fysisk aktivitet 24

1.4.5 Den daglige fysiske aktivitet 25

1.5 Sammenfatning ... 25

2. Fysisk inaktivitet i tal .. 27

3. Monitorering af fysisk aktivitet og fysisk form 29

3.1 Introduktion ... 29
3.2 Subjektive målemetoder ... 31
3.2.1 Spørgeskema ... 31
3.2.2 Aktivitetsdagbog ... 32

3.3 Objektive målemetoder .. 32
3.3.1 Dobbeltmærket vand ... 32
3.3.2 Bevægelsesregistrering .. 34
3.3.3 Pulsmåling ... 35
3.3.4 Kombinerede målere .. 38

3.4 Sammenfatning .. 39

4. Effekter af fysisk inaktivitet - mekanistiske studier 41
4.1 Introduktion ... 41
4.1.1 Rumflyvninger ... 41
4.1.2 Sengelygning .. 41
4.1.3 Immobilisering ... 42
4.1.4 Denervation ... 42
4.1.5 Ophør af regelmæssig fysisk træning 42

4.2 Mekanismer på kredsløb, muskler, knogler og stofskifte 43
4.2.1 Kredsløb .. 43
4.2.2 Muskelfibertype ... 44
4.2.3 Muskelfiberareal og muskelfibertyper 45
4.2.4 Muskelfunktion – kraft, hastighed, effekt 46
4.2.5 Muskeludholdenhed .. 47
4.2.6 Knogler og senevæv .. 48
4.2.7 Stofskifte ... 49

4.3 Biologiske mekanismer .. 49

4.4 Sammenfatning .. 50

5. Fysisk inaktivitet og de store folkesygdomme 51
5.1 Introduktion ... 51
5.2 Type 2-diabetes
- Observationsstudier: Fysisk inaktivitet og type 2-diabetes
- Randomiserede studier: Fysisk inaktivitet og type 2-diabetes
- Konklusion

5.3 Kræft
- Fysisk inaktivitet og tarmkræft
- Fysisk inaktivitet og brystkræft
- Fysisk inaktivitet og andre udvalgte kræftformer
- Observationsstudier: Fysisk inaktivitet og prognose efter en kræftdiagnose
- Randomiserede studier: Fysisk inaktivitet og prognose efter en kræftdiagnose
- Konklusion

5.4 Hjerte-kar-sygdomme
- Observationsstudier: Fysisk inaktivitet og hjerte-kar-sygdomme
- Randomiserede studier: Fysisk inaktivitet og hjerte-kar-sygdomme
- Konklusion

5.5 Knogleskørhed (osteoporose)
- Observationsstudier: Fysisk inaktivitet og knogleskørhed
- Randomiserede studier: Fysisk inaktivitet og knogleskørhed
- Konklusion

5.6 Muskel- og skeletlidelser
- Artrose
- Observationsstudier: Fysisk inaktivitet og artrose
- Randomiserede studier: Fysisk inaktivitet og artrose
- Rygsmarter
- Observationsstudier: Fysisk inaktivitet og rygsmarter
- Randomiserede studier: Fysisk inaktivitet og rygsmarter
- Konklusion

De fleste ved, at det er sundt at være fysisk aktiv – men de færreste kender til de helbredsmæssige konsekvenser af at leve et fysisk inaktivt liv. I nærværende rapport belyses derfor de kendte sammenhænge mellem fysisk inaktivitet og helbred, såvel som de mekanismer, der ligger til grund for disse. Rapporten inddrager endvidere sociologisk viden om fysisk inaktivitet. Dette medtages for at belyse den væsentlige problemstilling, der omhandler, hvordan man kan motivere folk til i første omgang at blive fysisk active og dernæst at fastholde dem i den aktive livsstil. I denne sammenhæng belyses også de barrierer, der ligger til grund for befolkningens fysisk inaktive livsstil.

Den foreliggende rapport kan både bruges som et opslagsværk, men den kan også læses sammenhængende og dermed give et dybdegående indblik i emnet. Rapporten kan endvidere bruges som baggrundsmateriale til undervisning, idet den indeholder kapitler, der bl.a. omhandler grundlæggende viden om fysiologiske mekanismer og målemetoder, relatert til fysisk inaktivitet.

Det er Motions- og Ernæringsrådets håb, at alle, der har interesse for området, vil anvende og kan drage nytte af rapporten.

Morten Grønbæk
Formand
Resumé

På trods af adskillige initiativer og indsatser med fokus på at gøre danskerne mere fysisk active, vurderer Sundhedsstyrelsen, at omkring 30-40 % af den voksne danske befolkning er fysisk inaktive.

Denne rapport behandler konsekvenserne af en fysisk inaktiv livsførelse. Uanset at fysisk inaktivitet kan føre til overvægt og fedme, er fokus i rapporten på effekten af fysisk inaktivitet per se og tager derfor udgangspunkt i den normalvægtige person.

Ud fra de foreliggende undersøgelser tyder det på, at fysisk aktivitet under 2,5 time om ugen ved moderat intensitet er associeret til en øget risiko for udvikling af forskellige livsstilssygdomme. Fysisk inaktivitet defineres derfor som: Mindre end 2,5 times fysisk aktivitet af moderat intensitet om ugen.

Fysisk inaktivitet har en række negative effekter på kredsløb, muskler, knogler og stofskifte. Studier af personer, udsat for længerevarende sengeleje eller immobilisering, har illustreret effekterne af reduceret vægtbæring og nedsat aktivitet i bevægeapparatet.

Der er fundet overbevisende sammenhæng mellem fysisk inaktivitet og forekomsten af type 2-diabetes hos mænd og kvinder. Lavt konditionsniveau og fysisk inaktivitet er desuden uafhængige prædiktorer for tidlig død hos patienter med type 2-diabetes. Fysisk inaktivitet er en væsentlig faktor ved udviklingen af hjerte-kar-sygdomme, og der er endvidere betydelig evidens for, at fysisk inaktivitet øger dødeligheden hos personer med iskæmisk hjertesygdom. Fysisk inaktivitet påvirker også flere former for kræft. Der foreligger god evidens for, at fysisk inaktivitet øger risikoen for bryst- og tyktarmskræft. Fysisk inaktivitet eller mangel på vægtbærende aktiviteter i barndommen øger risikoen for knogleskørhed og forværrer det aldersrelaterede knoglemineraltab hos voksne. Der foreligger beskeden evidens for, at fysisk inaktivitet øger
risikoen for senere udvikling af depression, og at fysisk inaktivitet kan forværre depressionstilstanden. Endvidere er der indirekte evidens for, at fysisk inaktivitet kan bidrage til at forværre symptomerne hos personer, der lider af skizofreni.

Fysisk inaktivitet forøger risikoen for tab af funktionsevne hos ældre mennesker. Denne negative konsekvens er større hos ældre med nedsat mobilitet end hos raske ældre. Selv kortere perioder med fysisk inaktivitet i relation til sygdom og hospitalsindlæggelse øger risikoen for tab af funktionsevne, og restitutionsperioden er længere hos fysisk inaktive ældre. Tab af muskelmasse og dermed nedsat muskelstyrke forekommer hos over 50 % af ældre over 80 år og mellem 13-24 % af ældre 65-70-årige og medfører øget risiko for balanceproblemer, fald, funktionsevnetab og nedsat livskvalitet.

Den sociale ulighed i befolkningens sundhed viser sig også, når det gælder fysisk inaktivitet. Undersøgelser viser bl.a., at der er en sammenhæng mellem uddannelseslængde og fysisk aktivitet i fritiden. Eksempelvis er der færrest fysisk aktive blandt personer med mindre end 10 års uddannelse. Der forekommer en række barrierer, ikke kun på individniveau, men også samfundsskabte barrierer, som spiller en afgørende rolle for det inaktive individs fastholdelse i denne livsstil, herunder bl.a. tilgængelighed og beliggenhed.

Rapporten præsenterer en række anvisninger og et idékatalog, der kan bidrage til at reducere antallet af fysisk inaktive personer i Danmark. Anvisningerne omfatter bl.a. en national handlingsplan for fysisk aktivitet, hvori bl.a. indgår en regelmæssig monitorering af danskernes fysiske aktivitetsniveau. Desuden bør der foretages en koordinering af samtlige igangværende som kommende indsatser og initiativer samt konkrete tiltag og initiativer, der sigter mod at give hele befolkningsen optimale muligheder for deltagelse i fysisk aktivitet, under hensyntagen til individuelle motiver og barrierer.
Summary

It is estimated by the National Board of Health that approximately 30-40 % of the adult Danish population is physically inactive when compared to the recommendations from the National Board of Health.

This report discusses the consequences of a physically inactive lifestyle. Despite the fact that physical inactivity may cause overweight and obesity, the aim of this report is to evaluate the effects of physical inactivity per se and do therefore not include obesity.

According to the available literature it is evident that being physical active less than 2.5 hours at moderate intensity per week is associated with an increased risk of developing certain lifestyle diseases. Therefore, in the current report physical inactivity is defined as: less than 2.5 hours of physical activity at moderate intensity per week.

Physical activity can be estimated using both subjective and objective methods and thus a measurement of physical inactivity is also obtained. Subjective measurements include questionnaires, diaries of daily physical activity and direct observation methods. Available objective methods include doubly-labelled water, movement registration, heart rate monitoring and methods that combine movement registration with for example heart rate or temperature monitoring. In general, combined accelerometry and heart rate monitoring are the most accurate way of estimating physical activity.

Physical inactivity induces several negative effects on the cardiovascular system, skeletal muscle, bones and metabolism. The effects of reduced weight bearing and reduced activity on these systems as well as on the motor apparatus have been shown in studies where healthy volunteers have been exposed to prolonged bed rest or immobilization of a limb for shorter or longer periods.

There is convincing evidence that physical inactivity is associated with the prevalence of type 2 diabetes. A low fitness level and physical inactivity are also independent predictors of premature mortality in patients with type 2 diabetes. Physical inactivity has a considerable impact on the development of cardiac diseases and there is convincing evidence that physical inactivity increases mortality among individuals with ischemic heart disease.
Physical inactivity also increases the risk of breast and rectal cancer. Furthermore, physical inactivity and the absence of weight bearing activities in childhood increases the risk of osteoporosis later in life and aggravates the age-related loss of bone mass in adults. There is some evidence that physical inactivity increases the risk of developing depression later in life and studies indicate that physical inactivity may aggravate the development of symptoms of depression.

Physical inactivity increases the risk of disability among elderly. The negative consequences are increased among individuals who have reduced mobility than among healthy individuals. In terms of illness or hospitalization the risk of disability is increased even with shorter time periods of physical inactivity, and the duration of recovery is increased in physical inactive elderly. Sarcopenia and thus reduced muscle strength occurs in more than 50% of the elderly above 80 years of age and between 13-24% of elderly between 65-70 years of age, and it causes an increased risk of mobility difficulties, falls, disability and reduced quality of life.

Studies have shown that there is an association between levels of education and physical activity in leisure time. As an example, individuals educated less than 10 years are less physically active compared with more educated individuals. There are several barriers, playing an important role in keeping the inactive individuals in the inactive lifestyle not only on the individual level, but also on society level.

This report includes suggestions to reduce the number of physically inactive individuals in Denmark. One of the suggestions is a national plan for physical activity. Another is the importance of a regular monitoring of the physical activity level of the Danish population. Furthermore, all initiatives and efforts, aiming at giving the population optimal possibilities to participate in physical activity taking into account motivation and barriers should be coordinated.
Kommissorium

På baggrund heraf vil Motions- og Ernæringsrådet endvidere tilstræbe at udarbejde anvisninger på indsatser over for fysisk inaktivitet på individniveau såvel som på samfundsplan.

Arbejdsgruppens sammensætning:
Professor, dr.scient., ph.d. Bente Kiens (formand)
Seniorforsker, fysioterapeut, ph.d. Nina Beyer
Cand.scient., M.Phil., ph.d. Søren Brage
Overlæge, dr.med. Lars Hyldstrup
Lektor, mag.art., ph.d. Laila S. Ottesen
Lektor, cand.scient., ph.d. Kristian Overgaard
Professor, overlæge, dr.med. Bente Klarlund Pedersen
Centerleder, cand.scient., ph.d. Lis Puggaard

Cand.scient. i human fysiologi Peter Gjerndrup Aagaard har været tilknyttet arbejdsgruppen som videnskabelig sekretær.
1. Fysisk inaktivitet

1.1 Introduktion

Menneskets overlevelse er bl.a. afhængig af adgang til tilstrækkelig føde. For at skaffe føde har mennesket tidligere været jægere og samlere – et liv som vekslede mellem et højt fysisk aktivitetsniveau og hvile. Mennesket er således genetisk tilpasset til at være fysisk aktiv. Da man i jæger- og samlertilværelsen og helt op til de sidste par hundrede år også ofte oplevede længere perioder med sult, er generne samtidig selekterede til at kunne modstå en negativ energibalance gennem længere tid.

Imidlertid er vor tids moderne samfund og den teknologiske udvikling medvirkende til, at vi kan leve et fysisk inaktivt liv og samtidig have let adgang til tilstrækkeligt føde hver dag.

Mange mennesker knytter primært betydningen af fysisk inaktivitet til udviklingen af overvægt og fedme. Meget tyder dog på, at fysisk inaktivitet har en selvstændig helbredsmæssig betydning blandt såvel normalvægtige som overvægtige individer. Da de sundhedsmæssige konsekvenser af overvægt og fedme samt betydningen af fysisk inaktivitet for udviklingen af overvægt og fedme er behandlet i andre rapporter (1), afgøreses nærværende rapport derfor til at beskrive den selvstændige betydning af fysisk inaktivitet for udviklingen af de 8 folkesygdomme samt funktionsevne.
Talrige observationsstudier på store befolkningsgrupper konkluderer, at regelmæssig fysisk aktivitet nedsætter risikoen for tidlig død – også efter justering for variable, der kan have indflydelse på resultaterne, herunder bl.a. fedme (2). Fra de samme studier kan det omvendt tolkes således, at fysisk inaktivitet øger risikoen for tidlig død.

1.2 Metodologiske problemer

I dette kapitel gennemgås baggrunden for Sundhedsstyrelsens anbefalinger om fysisk aktivitet, og der argumenteres for og gives en definition af begrebet fysisk inaktivitet.
1.3 Definition af fysisk inaktivitet

Internationalt set er der mindre uoverensstemmelser imellem de forskellige sundhedsmyndigheders definitioner af fysisk inaktivitet:

The Center for Disease Control and Prevention (CDC) i USA definerer fysisk inaktivitet således:

CDC har defineret forskellige niveauer af fysisk inaktivitet:

Anbefalet fysisk aktivitet – Rapporterede aktiviteter med moderat arbejdssintensitet i en normal uge (f.eks. rask gang, cykling, støvsugning, havearbejde og lignende aktiviteter, der medfører en stigning i vejtrækning eller en stigning i puls) i mindst 30 minutter om dagen, mindst 5 af ugens dage; eller aktiviteter med høj intensitet på en normal uge (f.eks. løb, aerobics hårdt manuelt arbejde og lignende aktiviteter, der medfører en kraftig stigning i vejtrækning eller en kraftig stigning i puls), i mindst 20 minutter om dagen i mindst 3 af ugens dage. Dette kan opnås gennem dagligdags aktiviteter (f.eks. husarbejde, transport og fritidsaktiviteter).

Utilstrækkelig fysisk aktivitet – At udføre mere end 10 minutters fysisk aktivitet ved moderat eller høj intensitet pr. uge totalt ved dagligdags aktiviteter (f.eks. husarbejde, transport og fritidsaktiviteter), men mindre end det anbefalede niveau af fysisk aktivitet.

Inaktivitet – At udføre mindre end 10 minutters fysisk aktivitet ved moderat eller høj intensitet pr. uge totalt ved dagligdags aktiviteter (f.eks. husarbejde, transport, og fritidsaktiviteter).

Inaktivitet i fritiden – Ingen rapporteret fritidsaktivitet (dvs. alle former for fysisk aktivitet og træning som f.eks. løb, calisthenics, golf, havearbejde og gang) i den forudgående måned.

Kilde: CDC, 2007 (4).
Sundheds- og sygelighedsundersøgelsen (SUSY) definerer fysisk inaktivitet således:

SUSY-undersøgelsen stiller spørgsmålet: Hvad passer bedst som beskrivelse af Deres aktivitet i fritiden?

1. Træner hårdt og dyrker konkurrenceidræt regelmæssigt og flere gange om ugen
2. Dyrker motionsidræt eller tungt havearbejde mindst 4 timer pr. uge
3. Spadserer, cykler eller har anden lettere motion mindst 4 timer pr. uge (medregn også søndagsture, lettere havearbejde og cykling/gang til arbejde)
4. Læser, ser på fjernsyn eller har anden stillesiddende beskæftigelse.

Kilde: Kjøller M, Rasmussen NK, 2002 (5).

WHO udtrykker nedenstående om fysisk inaktivitet:

”Delvis, men utilstrækkelig fysisk aktivitet (<2,5 time moderat fysisk aktivitet pr. uge)”

Kilde: WHO, 2002 (6).

I Danmark eksisterer der ingen officiel definition af fysisk inaktivitet, men Sundhedsstyrelsen har følgende anbefalinger for fysisk aktivitet for voksne:

Sundhedsstyrelsen anbefaler, at alle voksne er fysisk active mindst 30 minutter af moderat intensitet dagligt, helst alle ugens dage. De 30 minutter kan opdeles i mindre perioder, f.eks. 15 minutter om morgenen og 15 minutter senere, eller 3 gange 10 minutter i løbet af dagen. De 30 minutters fysiske aktivitet kan indgå som en del af tilværelsen og i forbindelse med ens vanlige gøremål. Det kræver således ikke nødvendigvis, at man iklæder sig træningstøj eller tilmelder sig et fitnesscenter. Fysisk aktivitet er også at cykle eller gå til arbejde og supermarked, at tage trappen, at udføre havearbejde, at gøre rent, at lege med sine børn m.v.

Kilde: Pedersen BK, Saltin B, 2007 (7).
Fysisk inaktivitet kan derfor med rimelighed defineres som:

mindre end 2,5 times fysisk aktivitet af moderat intensitet pr. uge

Denne definition er i overensstemmelse med The Center of Disease Control and Prevention i USA og WHO samt forenelig med SUSY-underseglens definition af fysisk inaktivitet. Ovenstående definition er således også i overensstemmelse med Sundhedsstyrelsens anbefalinger om fysisk aktivitet for voksne, således at hvis man er fysisk aktør mindre end 30 minutter om dagen, er man pr. definition fysisk inaktiv.

Moderat intensitet

Moderat intensitet svarer til 40-59 % af den maksimale itooptagelse, eller 40-59 % af pulsreserven (maxpuls – hvilepuls), eller 64-74 % af maxpuls eller 12-13 RPE (rate of perceived exertion, Borgskala) og er yderligere defineret som fysisk aktivitet hvor man bliver lettere forpustet men hvor samtale er mulig.

1.4 Evidens for anbefalingen om 30 minutter om dagen

I et andet studie, hvor postmenopausale kvinder indgik, blev det undersøgt, hvordan den samlede mængde af moderat fysisk aktivitet påvirkede risikoen for at få hjerte-
kar-sygdom. Alle kvinderne blev indledningsvis spurgt om, hvor mange timer de gik om ugen og blev derefter fulgt i 4 år. Undersøgelsen viste en tæt sammenhæng mellem den tid, kvinderne brugte på at gå og risikoen for at få diagnosticeret hjerte-kar-sygdom i observationsperioden. Jo flere timer der blev brugt på moderat fysisk aktivitet, jo mindre var risikoen for udvikling af hjerte-kar-sygdomme. Den gruppe der gik mellem 2,5 og 5 timer pr. uge, havde en reduceret risiko for hjerte-kar-sygdomme på 30 % (9).

Når det gælder forebyggelse af tarmkræft og brystkræft, er der ligeledes fundet en markant effekt af 30 minutters daglig motion. Det er imidlertid også klart, at 60 minutters fysisk aktivitet om dagen giver næsten dobbelt så stor risikoreduktion for kronisk sygdom og tidlig død. Om end nogle studier viser, at en mindre mængde moderat fysisk aktivitet også har effekt, er effekten så beskeden, at det ikke er rimeligt at lave kampagner, svarende til f.eks. 15 minutter om dagen.

1.4.1 Konditionsbegreber
Kondition er det objective mål for individets fysiske form og er ofte relateret til, hvor fysisk aktiv man er, selvom der også indgår en arvelig komponent. Det er imidlertid ikke alle former for fysisk aktivitet, der øger en persons kondition. (7).

1.4.2 Stofskiftekondition

Når der trænes ved høj intensitet opnås relativt hurtigt en forbedring af det centrale kredsløb. I modsætning hertil er arbejdsintensiteten ikke bestemmende for om man opnår en forbedret stofskiftekondition. Det er i højere grad mængden af fysisk aktivitet, der er afgørende for ændringer i stofskiftekonditionen. Det betyder, at ved gang, cykling eller løb er den afgørende faktor for stofskiftekondition den distance man tilbagelægger, mens det er mindre væsentligt, om man løber eller går.

1.4.3 Fysisk aktivitet og arbejdsintensitet

I spørgeskemaundersøgelser, hvor man har spurt folk, hvor aktive de er i fritiden og på arbejdet, har man fundet en klar sammenhæng mellem selvrapporteret fysisk aktivitet og relativ risiko for tidlig død, hjerte-kar-sygdom eller kærf. Men i mange befolkningsundersøgelser har man også målt personers kondital og brugt dette objektive mål for en persons træningstilstand og her fundet tydelig evidens for, at et højt kondital er relateret til beskyttelse mod hjerte-kar-sygdom og tidlig død.

Som nævnt øges konditionen især, når man er fysisk aktiv ved høj intensitet. Hvis konditallet er et direkte mål for individets sundhed, vil man forvente, at fysisk aktivitet ved høj intensitet har en selvstændig effekt. I en række studier er betydningen af arbejdsintensiteten blevet undersøgt, og det fremgår heraf, at fysisk aktivitet af høj intensitet også har en selvstændig betydning. Når man f.eks. i undersøgelsen af postmenopausale kvinder, som omtalt tidligere (10), sammenlignede de kvinder der brugte samme tid på at gå, men hvor nogle ud over dette lavede fysisk aktivitet ved høj intensitet (løb, cykling eller lignende), fandt man, at fysisk aktivitet af høj intensitet havde en yderligere beskyttende effekt. Paffenbarger og medarbejdere udførte ligesåledes undersøgelser over betydningen af intensitet og fandt en beskyttende effekt af at udføre fysisk aktivitet med høj intensitet til trods for, at den samlede mængde fysiske aktivitet pr. uge var under de anbefalede 3-4 timer pr. uge (13). I tråd med
dette fandt Laaksonen og medarbejdere (10) en stærk sammenhæng mellem arbejdsmotiv Gren af og nedsat risiko for udvikling af type 2-diabetes.

1.4.4 Regelmæssig fysisk aktivitet

Skal man være fysisk aktiv 3-4 timer om ugen eller 30 minutter om dagen? Umiddelbart kan det være vanskeligt at se relevansen af ovenstående spørgsmål, men ved nærmere eftertanke har spørgsmålet stor relevans for, hvordan befolkningen skal tilrettelægge sine motionsvaner. Spørgsmålet indebærer andre spørgsmål, så som: Skal man cykle til og fra arbejde dagligt eller melde sig ind i en idrætsklub og dyrke sport en til to gange om ugen? Der eksisterer ingen befolkningsundersøgelser, der kan hjælpe med at svare på dette. Man har i undersøgelserne typisk spurt til antallet af timer, man er fysisk aktiv pr. uge, uden at skelne til, om man var lidt aktiv hver dag eller meget aktiv f.eks. blot i weekenden.

Andre undersøgelser, udført på moderat aktive forsøgspersoner, har vist, at 1-1 1/2 timers cykelarbejde ved en moderat arbejdsbelastning medførte en øget insulinfølsomhed efter cykelarbejdet (16-18) og denne effekt varede maksimalt i 2 dage (16). Hvor lang tid den øgede insulinfølsomhed efter arbejde kan opretholdes, er dog afhængig af varighed og intensitet af det forudgående arbejde.

Denne type af forsøg tyder på, at det er hensigtsmæssigt at være regelmæssigt fysisk aktiv dagligt, i stedet for kun én gang om ugen, men det må understreges, at der kun er sparsomme epidemiologiske data at bygge på, når det gælder at svare på spørgsmålet om fordelene ved daglig eller ugentlig aktivitet.
1.4.5 Den daglige fysiske aktivitet

1.5 Sammenfatning

Når anbefalingen lyder “mindst 30 minutters fysisk aktivitet af moderat intensitet, helst alle ugens dage”, kan man med rimelighed sige, at i hvert fald mindre end 2,5 times fysisk aktivitet om ugen er mindre end de officielle anbefalinger fra Sundhedsstyrelsen. Dermed opnås en operationel definition af fysisk inaktivitet:

“Fysisk inaktive” er personer, der ikke lever op til Sundhedsstyrelsens anbefalinger om fysisk aktivitet. Denne definition er samtidig i overensstemmelse med internationale definitioner fra The Center for Disease Control and Prevention og World Health Organization og forenelig med Sundheds- og Sygelighedsundersøgelsens definition af fysisk inaktivitet.
2. Fysisk inaktivitet i tal

I en rapport fra 2006, udarbejdet af Statens Institut for Folkesundhed (SIF) for Sundhedsstyrelsen (20), angives konsekvenserne af fysisk inaktivitet (defineret i henhold til SUSY) for såvel individet som for samfundet. De væsentligste konklusioner fra rapporten er refereret nedenfor i punktform.

Tabel 2.1

<table>
<thead>
<tr>
<th>Konsekvenserne af fysisk inaktivitet i tal</th>
</tr>
</thead>
<tbody>
<tr>
<td>• I år 2000 var ca. 14 % af danske mænd og ca. 12 % af danske kvinder inaktive. *</td>
</tr>
<tr>
<td>• Hvert år er knap 4.500 dødsfald relateret til fysisk inaktivitet. Det svarer til 7-8 % af alle dødsfald i Danmark.</td>
</tr>
<tr>
<td>• De danskere, der årligt dør for tidligt relateret til fysisk inaktivitet, mister 50.000 leveår, ligeligt fordelt blandt mænd og kvinder.</td>
</tr>
<tr>
<td>• Fysisk inaktivitet er relateret til et tab i danskernes middellevetid på 9-10 måneder for både mænd og kvinder.</td>
</tr>
<tr>
<td>• Fysisk inaktive dør i gennemsnit 5-6 år tidligere end fysisk aktive.</td>
</tr>
<tr>
<td>• Fysisk inaktive kan forvente 8-10 flere leveår med sygdom end fysisk aktive.</td>
</tr>
<tr>
<td>• Hvert år er 100.000 hospitalsindlæggelser relateret til fysisk inaktivitet.</td>
</tr>
<tr>
<td>• Fysisk inaktivitet er hvert år relateret til 2,6 mio. ekstra kontakter til alment praktiserende læge.</td>
</tr>
<tr>
<td>• Der er hvert år 3,1 mio. ekstra fraværsdage fra arbejdet relateret til fysisk inaktivitet.</td>
</tr>
</tbody>
</table>

* Bemærk, at tallene fra 2000 er baseret på Sundhedsstyrelsens daværende anbefalinger om, at voksne skulle være fysisk aktive mindst 3,5 time om ugen. Derfor er de henholdsvis 14 % og 12 % fysisk inaktive mænd og kvinder defineret ud fra at være fysisk aktiv mindre end 3,5 time om ugen. Se også side 83.

Kilde: Juel K et al, 2006 (20).
3. Monitorering af fysisk aktivitet og fysisk form

3.1 Introduktion

Selvom fysisk form (kondition) og fysisk aktivitet kan forekomme at repræsentere to sider af samme sag, er de fundamentalt forskellige faktorer, og der er klare fordele forbundet med at indsamle information om begge i befolkningsundersøgelser. For eksempel har undersøgelser af både børn og voksne vist, at fysisk aktivitet og kondition begge har betydning for den stofskifterelaterede sundhed, og desuden at effekten af et højere aktivitetsniveau er mest tydelig hos dem, der er i dårligst fysisk form (21-25).

De to faktorer afviger væsentligt fra hinanden på afgørende punkter. Fysisk form er en **funktions- og kapacitetsstatus**, der typisk ikke varierer ret meget over kortere tidsperioder hos den enkelte person. Et sådant stabilt fænomen er forholdsvis let at måle på, da det ikke er så afgørende, om man måler om morgenen eller om aftenen, om mandagen eller om torsdagen, sommer eller vinter.

Fysisk aktivitet er derimod en **adfærd** og varierer som sådan hyppigt inden for den enkelte person fra sekund til sekund, minut til minut, time til time, dag til dag osv. Dette forhold vanskeliggør målingen af det **habituelle** fysiske aktivitetsniveau, dvs. det ”repræsentative” gennemsnitlige aktivitetsniveau for den enkelte person for den tidsperiode, man nu er interesseret i. Det er ofte ikke muligt at måle hele dette tidsrum (f.eks. det årlige eller måske endda det livslange gennemsnitlige aktivitetsniveau). I stedet for må man udtage en stikprøve, f.eks. over en uge eller en måned, og så forsøge at slutte sig til, hvad aktiviteten var i hele den periode, man i virkeligheden var interesseret i. Det er klart, at den sikkerhed, hvormed man kan drage en sådan slutning, afhænger af, hvor lang en periode man har målt over, og hvor præcis målingen har været i denne periode.

I MRC Ely-studiet i England fik en gruppe på 190 mennesker målt fysisk form, fysisk aktivitet (4-dages individuelt kalibreret pulsregistrering), højde og vægt gange i løbet af et år med fire måneder mellem hver måling (26). Det årlige gennemsnit af
disse målinger blev udregnet, og man analyserede herefter, i hvor høj grad en enkelt måling kunne “fange” dette årlige gennemsnit. Dette giver et mål for reliabiliteten, hvor en værdi tæt på 1 indikerer høj reliabilitet, og værdier tættere på 0 indikerer meget lav reliabilitet, hvor det er nødvendigt at tage flere målinger for at få et pålideligt gennemsnit på individniveau. Resultatet kan ses i Tabel 3.1, hvor det er underordnet, hvilken af de fire målinger af højde, man vælger – en enkelt måling er tilstrækkelig til at bestemme en voksen persons årlige højdegennemsnit. Kropsvægt varierer heller ikke specielt meget over et år, så også her kunne man klare sig med en enkelt måling. Fysisk form er også relativt stabil, især for mænd, mens en enkelt måling af den fysisk aktivitet (physical activity level, PAL) kun fanger omkring halvdelen af den information, man kunne have opnået med 4 målinger.

Tabel 3.1.

<table>
<thead>
<tr>
<th></th>
<th>Kvinder</th>
<th>Mænd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Højde</td>
<td>0,99</td>
<td>0,99</td>
</tr>
<tr>
<td>Vægt</td>
<td>0,97</td>
<td>0,97</td>
</tr>
<tr>
<td>Fysisk form (estimeret VO2max)</td>
<td>0,62</td>
<td>0,79</td>
</tr>
<tr>
<td>Fysisk aktivitet (PAL)</td>
<td>0,51</td>
<td>0,50</td>
</tr>
</tbody>
</table>

Physical Activity Level (PAL).

Kilde: Wareham NK et al, 2000 (26).

En anden grund til at fysisk aktivitet er en vanskelig størrelse at måle er, at fysisk aktivitet er meget forskelligartet, hvilket kan eksempliceret i alle de forskellige sportsgrønne, som i øvrigt ikke nødvendigvis udføres på samme måde af de enkelte uøvere. Dertil kommer alle de praktiske gøremål, de fleste mennesker foretager sig i deres dagligdag både i hjemmet, på arbejde eller transporten imellem hjem og arbejde og andre steder. Disse gøremål inkluderer sandsynligvis både planlagte og spontane, strukturerede og kaotiske bevægelsesmønstre. Ofte gentagne, planlagte, strukturerede aktiviteter er lettere at huske, men det betyder ikke nødvendigvis, at denne type aktiviteter er vigtigere for sundheden end for eksempel den distance en forretningsekspedient går i løbet af sin arbejdsdag uden at tænke nærmere over det.
De nævnte vanskeligheder har ført til udviklingen af mange forskellige målemetoder for fysisk aktivitet, der alle har både fordele og ulemper. Metoderne kan overordnet deles ind i objektive og subjektive målemetoder.

3.2 Subjektive målemetoder
Subjektive metoder til bestemmelse af fysisk aktivitet inkluderer spørgeskemaer, aktivitetsdagbøger og direkte observationsmetoder. Sidstnævnte er meget ressourcekrævende og bruges sjældent i større undersøgelser og beskrives ikke her.

3.2.1 Spørgeskema

Et vigtigt aspekt ved et spørgeskema er den tidsperiode, der refereres til – spørges der for eksempel til det seneste år (31) eller de seneste 7 dage eller ”en typisk uge” (32)? Typisk husker mennesker ikke alle aktiviteter lige godt, og det bliver formodentlig sværere og sværere at huske ens adfærd, jo længere tilbage i tiden der spørges til. Omvendt risikerer man, at atypisk adfærd (hvis personen eksempelvis har været syg eller på ferie) giver et forvansket billede af det habituelle aktivitetsmønster, hvis der måles over for kort tid. Et andet væsentligt aspekt ved et spørgeskema er, at der også spørges specifikt til inaktivitet, f.eks. hvor meget fjernsyn personen ser, og hvor lang tid der bruges foran computeren.

De enkelte svar i et spørgeskema kan oversættes til et omtrentligt fysiologisk energiforbrug ved tabelopslag (33;34), eller man kan vælge at inddele forsøgsdeltagerne ved andre typer kategoriseringer (35).
Generelt findes der en statistisk signifikant sammenhæng mellem spørgeskema- bestemt fysisk aktivitet og objektive mål for aktivitet, men sammenhængen er ofte ikke særlig stærk. Det skyldes ikke kun det forhold, at personen, der har besvaret spørgeskemaet, ikke kunne/ville rapportere sit sande aktivitetsmønster men også, at de forskellige metoder ofte måler forskellige facetter af den fysiske aktivitet. Generelt er det ofte vanskeligt at fortolke en tilsyneladende stærk statistisk sammenhæng mellem spørgeskema og en anden subjektiv metode (f.eks. en aktivitetsdagbog), som et udtryk for metodens præcision, da målefejl i de to metoder også kan relatere sig til hinanden og dermed forklare en del af sammenhængen (36). En person, der overrapporterer sin fysiske aktivitet i et spørgeskema, er med andre ord tilbøjelig til også at overrapporterere sin aktivitet i sin dagbog og omvendt.

3.2.2 Aktivitetsdagbog
Aktivitetsdagbogen er en logbog, hvor man med jævne tidsintervaller, typisk hvert 15. minut, noterer, hvilken aktivitet der har været den dominerende i det foregående interval. Dagbogen kræver et væsentligt engagement fra den person, der skal fylde den ud og anvendes derfor ikke så ofte i større befolkningsundersøgelser. Metoden kan dog med fordel anvendes i valideringsstudier til illustrering af styrker, svagheder eller specielle karakteristika ved andre metoder (37).

3.3 Objektive målemetoder
Tilgængelige objektive målemetoder inkluderer dobbeltmærket vand, bevægelsesregistrering, pulsmåling og metoder, der kombinerer bevægelsesregistrering med fysiologiske mål, som for eksempel puls eller temperatur.

3.3.1 Dobbeltmærket vand
Dobbeltmærket vand kan benyttes til måling af det totale daglige energiforbrug over længere tidsintervaller, typisk 1-2 uger. Metoden udnytter det forhold, at deuterium (tung brint, \(^2\text{H}\)) og ilt-18 (\(^{18}\text{O}\)) isotoper er stabile og eksisterer i relativt små koncentrationer i naturligt forekommende vand (hvor de fleste molekyler vil være af typen \(^1\text{H}_2\text{O}\)), inklusiv det vand, der er i kroppen. Giver man en person en lille dosis (typisk i størrelsesordenen 174 mg \(\text{H}_2\text{O}\) og 70 mg af \(\text{H}_2\text{O}\) pr. kg kropsvægt), vil disse tungere isotoper fordele sig jævnt mellem resten af kroppens brint- og iltatomer. Da vand og kulldioxid (\(\text{CO}_2\)) er slutproduktet af det menneskelige aerobe stofskifte (forbrænding), vil disse it og deuterium atomer forsvinde over tid, men dette sker hurtigst for ilt-18-

Kombineres estimatet af det totale energiforbrug med en måling af hvilestofskiftet, har man et meget præcist mål for al den energi, der er blevet brugt på fysisk aktivitet i de 1-2 uger, der er målt over. Dette kan udtrykkes som en ratio mellem det totale daglige energiforbrug og hvilestofskiftet, og kaldes så PAL (physical activity level). Måleusikkerheden på det totale energiforbrug er cirka 7-8 %, hvilket vil sige at usikkerheden på estimatet af den del af energiforbruget, der stammer fra fysisk aktivitet, ligger på omkring 15 % for aktive mennesker (PAL=2) og på omkring 30 % for overvejende inaktive mennesker (PAL=1,3).

3.3.2 Bevægelsesregistrering

Accelerometri (ACC) anvendes i stadigt større omfang i epidemiologiske undersøgelser i takt med, at teknologien er blevet billigere og bedre. Diverse tilgængelige accelerometre har typisk hukommelse nok til at gemme intensiteten af accelerationen i høj tidsopløsning over adskillige uger, hvilket muliggør mere detaljerede analyser af aktivitetsmønstre.

Selv princippet i metoden tager udgangspunkt i den klassiske fysik. Typisk bæres et accelerometer på hoften eller et andet centrat sted på kroppen, fordi dette er tæt på kroppens massemidtpunkt. De mest anvendte accelerometre måler kun acceleration i en retning (typisk lodret hvis personen står op), hvilket er tilstrækkeligt for måling af forskellige ganghastigheder, men ikke godt nok til at måle forskel på forskellige løbehastigheder (46;47). De enkelte modeller kan desuden variere i forhold til lineæritet og frekvensfiltering (48;49). Derudover er det helt åbent, at et accelerometer, der sidder på hoften eller andre steder på torsoen, ikke vil måle ret meget under almindelig cykling og sikkert heller ikke under svømning. Generelt er relationen mellem accelerometer målinger og det fysiologiske energiforbrug derfor meget afhængig af hvilken aktivitet, der udføres (46;47;50-57).

Til gengæld viser nyere undersøgelser (58), at det stort set ikke kan betale sig at udføre individuel kalibrering af den enkelte persons relation mellem energiforbrug og accelerometrets målinger (Tabel 3.2 og 3.3). Den største fejlkilde i den sammenhæng er forskellighederne mellem aktivitetsstyper og ikke så meget forskelligheden mellem personer, når de ellers udfører den samme aktivitet. Da det er vanskeligt at vide, hvilken aktivitetsstyp der udføres til et hvilken som helst tidspunkt (f.eks. minut for minut) i en accelerometerfil, der repræsenterer eksempelvis en uges aktivitet, kunne man derfor helt fraråde at forsøge at omregne sådanne accelerometerdata til fysiologisk energiforbrug. I stedet kan man acceptere, at denne metode er et mål for bevægelse (eller mangel på samme), som måske kan vise sig at være mindst lige så vigtig for sundheden. Er man villig til at acceptere denne præmis, kan accelerometri anvendes som (in)aktivitetsmålg i alle alders- og sygdomsgrupper, også under daglige aktiviteter. Den væsentligste begrænsning i denne sammenhæng er, at man ikke kan se forskel på, hvornår personen sidder helt stille, og hvornår personen har taget accelerometeret af. Her vælger man typisk at scanne hver fil for lange perioder med kontinuerlig total inaktivitet og dernæst at sætte en tærskelværdi for, hvornår det anses for sand-
3.3.3 Pulsmåling

Registrering af pulsfrekvensen (eller rettere hjertefrekvensen) som metode til måling af fysisk aktivitet har som accelerometrien nydt godt af den teknologiske udvikling, og tilgængelige pulsmåleres har tilstrækkelig hukommelse til at måle over lang tid med høj tidsopløsning. Det grundlæggende måleprincip i en moderne pulsmåler er registrering af den elektriske spændingsforskel (elektrokardiogrammet), der typisk måles mellem to elektroder på hudens overflade. Desuden udmærker pulsregistrering sig ved at være et etableret, velstuderet koncept inden for arbejdsfysiologien, idet der inden for det enkelte individ er en god sammenhæng mellem arbejdsintensiteten og pulsfrekvensen, når intensiteten er moderat og opefter. Derudover er denne sammenhæng næsten den samme, ligeudlig hvilken aktivitet man foretager sig, om end pulsen dog typisk er lidt højere for et givent intensitetsniveau, hvis man kun arbejder med armene (59;60).

Tabel 3.2 viser, hvordan de forskellige kalibreringsprocedurer relaterer sig til 'den ideelle' kalibreringsprocedure. Nederst i tabellen ses det 'kalibreringsniveau', der ikke kræver nogen dynamisk test, men kun anvender personens sovepuls og køn som kalibreringsparametre. Dette niveau fanger kun 28 % af den variation mellem personerne (den inter-individuelle forklarede varians, R^2), som løbebåndstesten med iltoptagelse ville fange. En støjtstest (uden iltoptagelse) fanger næsten to tredjedele, mens en kort gangtest (uden iltoptagelse) fanger lige godt halvdelen af denne inter-individuelle variation. Hvis disse sammenhænge forlænges op til den estimerede (64) eller eventuelt målte maksimale puls, opnås et estimat af den aerobe kapacitet eller fysiske form (kondition), hvilket er et yderligere argument for at inkludere en kalibreringstest i en videnskabelig undersøgelse.
Tabel 3.2.

Forklaret intra- og inter-individuel variation og standardfejl ved fire forskellige kalibreringsprocedurer

<table>
<thead>
<tr>
<th>Kalibrering</th>
<th>Forklaret variation (R²)</th>
<th>Standardfejl (J·min⁻¹·kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>intra</td>
<td>inter</td>
</tr>
<tr>
<td>Løbebåndstest + iltoptagelse</td>
<td>0,98</td>
<td>0,99</td>
</tr>
<tr>
<td>Puls</td>
<td>0,98</td>
<td>0,99</td>
</tr>
<tr>
<td>Steptest</td>
<td>0,95</td>
<td>0,78</td>
</tr>
<tr>
<td>Puls</td>
<td>0,95</td>
<td>0,64</td>
</tr>
<tr>
<td>Gangtest</td>
<td>0,95</td>
<td>0,79</td>
</tr>
<tr>
<td>Puls</td>
<td>0,93</td>
<td>0,53</td>
</tr>
<tr>
<td>Ingen dynamisk test</td>
<td>0,95</td>
<td>0,73</td>
</tr>
<tr>
<td>Puls</td>
<td>0,92</td>
<td>0,28</td>
</tr>
</tbody>
</table>

Estimaterne skal fortolkes relativt til reference kalibreringsmetoden (moderat til intensiv løbebåndstest med iltop-tagelsesmåling). Generelt indikerer en højere målepræcision ved højere R² værdier og lavere standardfejl. Den inter-individuelle forklarede variation og standardfejl (tallene i fed skrift) kan her opfattes som mål, for hvor meget præcision, der mistes ved at bruge en kalibreringsprocedure, der er forskellig fra referenceproceduren (løbebåndstest+iltop-tagelse). N=51.

ACC = Accelerometri. Puls = Pulsmåling. J = Joule. 1 kcal=4,2 kJ.

Pulsregistrering kan principielt anvendes i alle aldersgrupper, men man bør være specielt opmærksom på anvendelsen af medicin, der har indvirkning på hjerterytmen, eksempelvis betablokkere. Afhængig af medicineringsdosis, vil individuel kalibrering dog kunne minimere denne målefejl. Derudover giver det ingen mening at måle den fysiske aktivitet via pulsregistrering på folk med (aktive) pacemakere og formodentlig heller ikke på folk med akutte infektioner. Da det grundlæggende måleprincip i en pulsmåler er registrering af de større spændningsforskellændringer (QRS-kompleks) i elektrokardiogrammet, er metoden principielt også begrænset af, hvor kraftigt dette signal er på huden, hvilket til dels bestemmes af underliggende anatomicke forhold, herunder fedtlag. Dette kan dog imødekommes ved at anvende målere med en større afstand mellem elektroderne og/eller elektroder med større areal, hvilket tilsammen vil resultere i et bedre signal/støjforhold.
3.3.4 Kombinerede målere

De nævnte begrænsninger ved både bevægelsesmåling og pulsmåling har inspireret forskere til at kombinere metoderne, i håbet om at forbedre præcisionen og omgå metodernes svagheder, når de bruges hver for sig. De fleste studier, som har undersøgt dette, konkluderer da også, at kombinationen er bedre end hver metode brugt separat (37;47;49;58-60;65-72).

Det er herunder især interessant at bemærke, at nødvendigheden af omstændelige individuelle kalibreringsprocedurer for at opnå en tilstrækkelig målepræcision, ikke er nær så udtalt, som hvis pulsregistrering anvendes alene. Tabel 3.3 viser resultaterne fra 38 mænd og kvinder, som først udførte de kalibreringsprocedurer, der er nævnt i Tabel 3.2, og dernæst en række forskellige dagligdags aktiviteter, som for eksempel afslappende hvile, mental stress (hovedregning på tid og ordfarve konflikttest), skrivebordsarbejde, opvask, gulvfejning, rejse sig fra en stol, fylde varer i og skubbe en indkøbsvogn, gå op og ned ad trapper, langsom og hurtig cykling og gang og løb. Under alle aktiviteter blev både den fysiologiske arbejdsintensitet (liptoptagelse), puls-frekvensen, og den 1-dimensionelle acceleration langs kroppens længdeakse målt. Puls og acceleration blev så brugt til at estimere arbejdsintensiteten via de forskellige kalibreringsparametre, der var tilgængelige på de respektive niveauer og alle estimater, sammenlignet med den faktisk målte arbejdsintensitet (liptoptagelse). Det er tydeligt at se, at præcisionen af den model, der kun bruger pulsinformation, er meget afhængig af at blive kalibreret på individuelt niveau; estimeringsfejlen stiger til næsten det dobbelte fra den bedste men mest ressourcekrævende kalibrering (54 J·min⁻¹·kg⁻¹) ned til den dårligste men nemmeste kalibrering (95 J·min⁻¹·kg⁻¹). Der er stort set ingen gevinst ved individuel kalibrering af accelerometerdata (alle niveauer ligger inden for cirka 5 %), mens den kombinerede accelerometer+puls-metode (70) opretholder en høj præcision hele vejen ned gennem hierarkiet med de forskellige individuelle kalibreringsprocedurer. Estimeringsfejlen af den kombinerede metode stiger med kun 37 % fra højeste (55 J·min⁻¹·kg⁻¹) til laveste (75 J·min⁻¹·kg⁻¹) kalibreringsniveau og kun med omkring 10 % fra højeste niveau til det laveste, der bruger en simpel steptest som individuel kalibrering (61 J·min⁻¹·kg⁻¹). Dette niveau forklarer 88 % af variationen i den målte arbejdsintensitet, og alt i alt er det et bemærkelsesværdigt resultat, da denne metode også er relativt uafhængig af, hvilket kommercielt måleinstrument der anvendes, når bare det (mindst) måler puls og acceleration langs kroppens længdeakse (58).
Kombineret accelerometri og pulsmåling kan anvendes i alle aldersgrupper, men der gælder de samme forbehold i relation til pulsregistrering i visse medicinerede og/eller syge mennesker, som beskrevet ovenfor.

Tabel 3.3.
Målpræcision af det fysiologiske energiforbrug under dagligdags aktiviteter ved forskellige niveauer af individuel kalibrering

<table>
<thead>
<tr>
<th>Individuel kalibreringsniveau</th>
<th>Løbebåndstest + iloptagelse</th>
<th>Steptest</th>
<th>Gangtest</th>
<th>Ingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerometri</td>
<td>117</td>
<td>123</td>
<td>121</td>
<td>123</td>
</tr>
<tr>
<td>J·min⁻¹·kg⁻¹</td>
<td>(0,69)</td>
<td>(0,61)</td>
<td>(0,65)</td>
<td>(0,61)</td>
</tr>
<tr>
<td>Pulsregistrering</td>
<td>54</td>
<td>72</td>
<td>70</td>
<td>95</td>
</tr>
<tr>
<td>J·min⁻¹·kg⁻¹</td>
<td>(0,91)</td>
<td>(0,86)</td>
<td>(0,84)</td>
<td>(0,76)</td>
</tr>
<tr>
<td>Kombineret accelerometri + puls</td>
<td>55</td>
<td>61</td>
<td>65</td>
<td>75</td>
</tr>
<tr>
<td>J·min⁻¹·kg⁻¹</td>
<td>(0,91)</td>
<td>(0,88)</td>
<td>(0,87)</td>
<td>(0,82)</td>
</tr>
</tbody>
</table>

Estimeringsfejl (J·min⁻¹·kg⁻¹) af forskellige modeller for arbejdsintensitet. Tallene i parentes og kursiv er den totale forklarede variation (R²) mellem estimerede og målte værdier. Generelt indikerer en højere målpræcision ved højere R² værdier og lavere standardfejl. N=38.

3.4 Sammenfatning

Der er stigende opmærksomhed på vigtigheden af fysisk aktivitet for at bevare et godt helbred. Dette vanskeliggør imidlertid også bestemmelsen af fysisk aktivitet på befolkningsniveau, idet en typisk spørgeskemaundersøgelse ikke alene vil reflektere det sande aktivitetsniveau i det omfang, det erindrtes, men også i det omfang, vedkommende finder det socialt acceptabelt at svare. Da de sociale normer hele tiden ændrer sig, er det ikke let at konkludere, hvad der virkelig er sket fra den ene undersøgelsesrunde til den næste.

Det er især her, de objektive målemetoder har deres styrke. En væsentlig begrænsning ved de metoder, der involverer at forsøgspersonaen bærer et måleinstrument, er dog at man ikke kan være 100 % sikker på, at personen har båret instrumentet under
hele monitoreringsperioden. Det er forholdsvis let at se, hvornår en pulsmåler er taget af, men som nævnt under afsnittet med bevægelsesmåling, er dette ikke altid helt ligetil for accelerometri. Uanset hvordan disse 'ikkemonitorerede' perioder identificeres, er man efterfølgende nødt til at "gætte" sig til, hvad aktiviteten har været i disse perioder, f.eks. ud fra gennemsnittet af resterende data for personen, den gennemsnitlige aktivitet på det pågældende tidspunkt på dagen, hvilestofskiftet, eller et helt fjerde "gæt".

4. Effekter af fysisk inaktivitet – mekanistiske studier

4.1 Introduktion

Som tidligere omtalt kan det være vanskeligt at definere, hvornår man som menneske har en fysisk inaktiv livsførelse. Der findes dog situtioner, hvor mennesker udsættes for ekstrem reduktion i den fysiske aktivitet, og disse situationer har vist sig at være gode modeller til at illustrere, hvorledes fysisk inaktivitet kan påvirke kroppen og give et indblik i mekanismerne bag disse effekter.

4.1.1 Rumflyvninger

4.1.2 Sengeleje

Det siger sig selv, at anvendelsen af rumfartøjs besætning som forsøgspersoner i studier af effekter af manglende vægtbæring er begrænset af, at rumflyvninger er forholdsvis sjældne og dyre. I stedet har man i mange studier undersøgt bevæгеapparatets, kredsløbs og stofskiftets reaktioner på sengeleje af flere dages eller ugers varighed. Ved sengeleje påvirkes bevæгеapparatet og kredsløbet på en måde, der er sammenlignelig med situationer ved reduceret påvirkning af jordens tyngdefelt, idet kropsvægten ikke længere tynger rygsøjlen og benenes knogler. Samtidig mindskes aktiviteten i de muskler, der normalt anvendes til at bevare balancen i den opretholdende stilling og til at bevæge sig. Effekterne af sengeleje kan således være forårssaget dels af reduceret vægtbæring dels af reduceret aktivitet i bevæгеapparatet (hypokinesi).
Studier af effekten af immobilisering og sengeleje er hovedsageligt baseret på dyreforsøg og studier af unge raske personer i forbindelse med sengeleje. På trods af at ældre mennesker i langt højere grad er udsat for kronisk sygdom, indlæggelser og kirurgiske indgreb, foreligger der kun meget sparsomme data på effekten af immobilisering og sengeleje hos denne gruppe. Fundene fra et nyere studie tyder dog på, at tab af muskelmasse som følge af immobilisering, er mere udtalt hos raske ældre end hos raske yngre mennesker (75).

Disse studier af sengeleje har, foruden relevansen for rumflyvninger, et langt bredere perspektiv, idet de fortæller os om, hvordan kroppen reagerer hos personer, der pga. sygdom eller skader må blive i sengen i en periode.

4.1.3 Immobilisering

4.1.4 Denervering

4.1.5 Ophør af regelmæssig fysisk træning

I de ovennævnte modeller er inaktiviteten i hele kroppen eller det enkelte ben/arm ofte nær fuldstændig, hvilket f.eks. ikke er tilfældet hos personer, der har en fysisk inaktiv livsførelse. Derfor sætter effekterne af inaktiviteten også hurtigere ind ved brug af disse modeller end det, man vil observere hos personer med en fysisk inaktiv livsførelse. Det er netop disse hurtige og store effekter, der gør modellerne velegnede til
at studere mekanismerne bag inaktivitets virkning på kroppen. Der findes dog også
studier, hvor man har undersøgt fysisk inaktivitet ved at kigge på effekten af ophør af
regelmæssig træning. I denne type undersøgelser ser man altså på mennesker, som
har en normal dagligdags aktivitet, hvor man har fjernet et struktureret træningspro-
gram helt eller delvist. Disse studier omtales ofte som detræningsstudier.

4.2 Mekanismer på kredsløb, muskler, knogler og stofskifte
I det følgende gennemgås effekterne af fysisk inaktivitet på kredsløb, muskler, knog-
ler og stofskifte, som er vist i de ovennævnte modeller. De resultater, der præsen-
teres i de nedenstående afsnit, er opnået ved studier udført på voksne raske mænd
i aldersintervallet 18-45 år, hvor intet andet er anført. I de tilfælde, hvor der findes
tilstrækkeligt grundlag for at lave sammenligninger med andre grupper (kvinder, æl-
dre), vil dette være udspecificeret.

4.2.1 Kredsløb
Ved sengeleje af over 1 uges varighed ses et markant fald i den maksimale iltoptagel-
seshastighed (VO\textsubscript{2max}). I et review over en række studier med sengeleje fra 1-4 ugers
varighed fandt man, at VO\textsubscript{2max} faldt med 5-6 % pr. uge (76). I studier, som inkluderede
kvinder og midaldrende mænd, fandt man ingen tydelig effekt af alder eller køn på
faldet i VO\textsubscript{2max} under sengeleje (76).

Faldet i aerob kapacitet, målt som maksimal iltoptagelse, kan i høj grad tilskrives
tilpasninger i det centrale kredsløb. Eksempelvis så man i det nu klassiske studie af
Saltin og medarbejdere fra 1968 (77), at 3 ugers sengeleje reducerede hjertets mak-
simale slagvolumen under arbejde med gennemsnitligt 29 %. En lille stigning i den
maksimale pulsfrekvens fra 193 til 197 slag/min. kunne ikke opveje faldet i slagvolu-
men, og hjertets maksimale minutvolumen blev således reduceret med 26 %, hvilket
svarede til reduktionen i VO\textsubscript{2max}. Studiet omfattede kun 5 raske unge mænd i 20-års-
alderen, men de opnåede resultater er stort set repræsentative for senere fund (76).

Også i hvile ses en ca. 20 % reduktion af slagvolumen efter 10-21 dages sengeleje, og
både i hvile og ved submaksimale arbejdsintensiteter ses en stigning i pulsfrekven-
sen (77,78). En væsentlig forklaring på, at hjertet pumper mindre blod ud pr. slag, er,
at fyldningen af hjertet er reduceret grundet en reduktion i kroppens samlede blod-
volumen. Der er således god overensstemmelse mellem størrelsen og tidsforløbet af tabet i blodvolumen og reduktionen af VO$_{2\text{max}}$ ved sengeleje (76).

Få ugers sengeleje påvirker ikke hjertets arbejdevne som sådan, og i forsøg, hvor man har vedligeholdt plasmavolumen under sengeleje, ser man, at hjertets maximale minutvolumen og kroppens VO$_{2\text{max}}$ opretholdes på det samme niveau som før inaktivitetsperioden (76).

I et studie, hvor detræningseffekter blev undersøgt og som omfattede 7 veltrænede personer (6 mænd, 1 kvinde), fandt man, at 3 ugers ophør af regelmæssig udholdenhedstræning reducerede VO$_{2\text{max}}$ med 7 %, mens den arteriovenøse iltdifferens (a-v differens) ved maksimalt arbejde ikke var påvirket. Dette indikerede, at ekstraktionen af ilt fra blodet ikke var påvirket. Efter 12 ugers træningsophør sås dog reduktioner i a-v iltdifferensen (79). Dette studie understøtter, at den tidlige reduktion i VO$_{2\text{max}}$ skyldes et reduceret slagvolumen og minutvolumen, mens de reduktioner, der forekommer på lidt længere sigt, også kan forklares af reduceret iltekstraktion i det perifere kredsløb.

4.2.2 Muskelstørrelse

Et fremtrædende fund efter immobilisering eller sengeleje er, at musklerne bliver mindre (muskelatrofi). Der foregår hele tiden proteinnedbrydning og proteinnydannelse (proteinsyntese) i muskler. Når disse to processer er i balance (foregår med samme hastighed), vil der ikke forekomme ændringer i muskelmassen. Proteinsyntesen falder dog når musklerne ikke bruges, som f.eks. under sengeleje (80). På de individuelle muskler kan man observere reduceret muskelvolumen allerede efter 1-2 ugers uges sengeleje eller immobilisering (80,81). Musklernes volumenreduktion øges med stigende varighed af inaktiveringen. I ekstensormuskele i benene ses generelt et tab af muskelvolumen eller tværsnitsareal på 2-3 % pr. uge over de første 4-6 ugers sengeleje (81).

I et studie, hvor en gruppe på 22 mænd og kvinder fik immobiliseret det ene ben, fandt man dog et 10 % fald allerede efter 2 ugers immobilisering (82). I en nylig undersøgelse af raske forsøgspersoner reduceredes muskelmassen i underekstremiteteterne med 1,4 ± 0,1 kg efter 28 dages sengeleje. Ved anvendelse af stabile isotoper,
fandt man endvidere, at den negative proteinbalance under sengelejet udelukkende var på grund af en reduceret proteinsyntese, mens proteinnedbrydningen var uændret (83).

Ved længere tids sengeleje mindskes hastigheden af tabet af muskelvolumen betydeligt. Således så man i et studie, at 1 måneds sengeleje medførte et tab på 10% af muskelvolumen i knæekstensorerne, mens yderligere 2 måneders sengeleje kun medførte et ekstra tab i muskel-volumen på yderligere 8% (84). Der kan dog være stor variation i atrofi mellem de enkelte muskler afhængig af inaktivitetsmodellen og af den forudgående brug af musklerne. Eksempelvis er tabet af muskelmasse størst i benenes muskulatur og mindre eller helt fraværende i armenes og kropstammens muskulatur ved sengeleje. Således fandt man efter 17 ugers sengeleje et tab i muskelmasse på 0,7% pr. uge i benmuskulaturen, men intet signifikant tab af muskelmasse i arme og kropsstamme (85).

4.2.3 Muskelfiberareal og muskelfibertyper

Muskler består af et stort antal aflange celler, kaldet muskelfibre. Tøværnitsarealet af muskelfibrene afhænger i høj grad af musklernes aktivitetshistorie. Den ovenfor omtalte atrofi på hele muskler er således primært forårsaget af en reduktion i de enkelte muskelfibrene tværsnitsareal snarere end af et tab af muskelfibre. Eksempelvis så man hos 7 raske unge mænd en reduktion af tværsnitsarealet i fibre fra m. vastus lateralis (lårarmusklen) på 18% efter 6 ugers sengeleje (86).

Ud over at ændre størrelse bevirker inaktiviteten også en ændring i muskelfibrenes kontraktilitet, proteinindhold og funktion. Skønt der er mange faktorer, som påvirker den enkelte muskelfibers kontraktile og metaboliske egenskaber og dermed funktion, kontrollerer proteinet myosin heavy chain (MHC) i princippet muskelfibers kontraktile karakteristika. Enhver ændring i MHC-profilen i muskelfibere, vil således have indflydelse på den enkelte muskelfibers såvel som hele musklens funktion og muskelfibertypebestemmes derfor ud fra indholdet af MHC-isoformer. Der findes en langsom (type I) og flere hurtige (type IIa, IIb og IIx) MHC-isoformer. Et skift i MHC til hurtigere isoformer ved inaktivitet (aflæsning af muskulaturen) er et generelt fund i dyrestudier. Hos mennesker er der mere varierende resultater. Eksempelvis er der fundet øget indhold af type II fibre efter blot 11 dages rumflyvning (73) og formindsket indhold af type I fibre efter 4-6 ugers immobilisering som følge af knæskade
I modsætning hertil har man i forsøg med 6 ugers sengeleje ikke kunnet påvise ændringer i fibertypefordelingen (86). I forsøg med 12 ugers sengeleje er dog vist fibertypetransformationer i benmuskulaturen i form af øget indhold af såkaldte hybridfibre, som er fibre, der strukturelt og funktionelt er en blanding af de klassiske rene fibertyper (88).

Samlet antyder dette, at fibertypetransformation forekommer, hvis inaktiviteten er af tilstrækkeligt omfang og varighed. Det er således ikke bare musklernes størrelse men også deres kontraktionshastighed og energimetabolisme, der forandrer sig ved inaktivitet.

4.2.4 Muskelfunktion – kraft, hastighed, effekt

Musklers funktion afspejles i deres evne til at skabe kropsbevægelser, hvis kraft og hastighed tilsammen udgør effekten af bevægelsen. Disse tre parametre kan måles i eksperimentelle situationer og danner tilsammen et billede af musklernes funktionelle niveau.

Det er vist i flere studier, at musklernes evne til kraftudvikling falder hurtigere og mere markant end musklernes volumen i forbindelse med en inaktivitetsperiode. Eksempelvis fandt man efter 3 måneders sengeleje en reduktion af den maksimale muskelkraft på 40-60 %, mens musklernes volumen kun var reduceret med 18-29 % (84). Tilsvarende fandt man i studiet af Hespel og medarbejdere (82), at 2 ugers immobilisering førte til 10 % tab af muskelværnsnitsareal, 20 % tab af maksimal kraft og 25 % tab af maksimal effekt. Også i et studie af Paddon-Jones og medarbejdere (89) fandt man en reduktion af muskelstyrken i benmuskulaturen på 28 % samtidig med et fald i benmuskelmasse på 1,4 kg efter 28 dages sengeleje. Dette betyder, at en del af krafttabet skyldes en reduceret evne til at aktivere musklerne via nervesystemet og/eller en ringere muskelkvalitet (specifik muskelstyrke).

En reduceret evne til aktivering af muskler efter sengeleje/immobilisering er fundet i flere studier (84;86;90) og kan bl.a. forklares ved, at de neuroner, der aktiverer musklerne, bliver mindre excitabile. Data fra rumflyvninger og studier af sengeleje af mere end 2 måneders varighed indikerer, at tabet af muskelfunktion forløber med en væsentlig langsommere hastighed efter 1-2 måneder end i begyndelsen af inaktivitetsperioden (73;84).
Musklers maksimale sammentrækningshastighed er relativt velbevaret eller endog svagt stigende (91) efter en inaktivitetsperiode. Dette skyldes formodentlig den ovenfor omtalte omdannelse af type I-fibre i retning af type II-fibre, da type II-fibre har hurtigere sammentrækningshastighed. En foret set sammentrækningshastighed kan ved muskelarbejde delvist kompensere for det fald, der ses i muskelkraft, idet musklernes effekt (arbejdet pr. tid) er lig med kontraktionshastigheden multipliceret med kraften. Samlet set vil inaktivitet dog også føre til en reduktion i musklernes maksimale effekt, da kraften falder mere end hastigheden øges (92).

4.2.5 Muskeludholdenhed

Et generelt fund efter inaktivitet er, at musklernes udholdenhed ved en given arbejdsintensitet er nedsat. Musklers udholdenhed er meget nært knyttet til arbejdsintensitets relative størrelse i forhold til det maksimale niveau. Hvis musklernes maksimale kraftudviklingsevne falder, vil en given submaksimal arbejdsintensitet udgøre en større relativ andel af det nye maksimumniveau, hvilket forklarer, at udholdenheden falder efter inaktivitet. Et fibertypeskift fra type I- til type II-fibre, som induceres af inaktivitet, kan ligeledes medvirke til at forklare den reducerede udholdenhed, idet type II-fibre generelt har en ringere udholdenhed end type I-fibre.

Man har endvidere fundet, at musklernes kapillarisering reduceres ved inaktivitet (76). Dette gør, at musklernes blodgennemstrømning bliver mindre, hvilket kan reducere musklernes udholdenhed ved submaksimalt arbejde.

Musklernes mitokondrielle funktion og indholdet af mitokondrielle enzymre reduceres mærkbart ved inaktivitet. Efter 42 dages sengeleje er der fundet en reduktion i mitochondrievolumen i lærmuskulaturen, såvel som i musklernes oxidative kapacitet (93). I studier af effekt af sengeleje er der fundet reduktioner i enzymre, der katalyserer reaktioner i fedtoxidationen og i enzymre fra citronsyrecyklus (81). Detræningsstudier har ligeledes vist, at få ugers træningsophør kan medføre markante reduktioner i mitokondriel enzymaktivitet både hos meget veltrænede individer og hos moderat trænede individer (94).
4.2.6 Knogler og senevæv

Kroppens vægt i jordens tyngdefelt udøver en stimulerende effekt på specielt benenes og rygsøjlenes knogler i den stående stilling. Dette ses tydeligt, når man fjerner denne påvirkning ved sengeleje, immobilisering eller opholder sig i rummet. Efter blot 1 uges sengeleje kan der observeres øget calciumudskillelse i urin og afføring, hvilket indikerer en øget nedbrydning og/eller en reduceret genopbygning af knoglevævet (81). Da omsætningen i knoglevævet er ret langsom, er der ofte ikke målbare forandringer i knognernes mineralindhold før efter 1-2 måneders inaktivitet. Det er sjældent, at så langvarige forsøg med sengeleje udføres, men fra de forsøg, der findes, og fra undersøgelser af patienter med rygmarvslæsioner, kan man udlede, at mineraltaetheden i underekstremiteterne falder med ca. 2-4 % pr. måned over de første ca. 6 måneders inaktivitet (81). Herefter er tabet langsommere og i hvert fald hos patienter med rygmarvslæsioner opstår der en ny ligevægt mellem knoglenedbrydning og -opbygning.

Forskellige kraftpåvirkninger har meget forskellig effekt på vedligeholdelse af knoglevæv, således er dynamisk kraftpåvirkning, høj intensitet, hyppig gentagelse, ung alder og ekspression af estrogen-receptor alfa (ERα) forbundet med særlig stor knogleanabol effekt (95). Disse effekter udspiller sig gennem den såkaldte mekanostat, som adapterer knoglemineralindholdet i overensstemmelse med den lokale belastning.

Ligesom for musklernes vedkommende er der også store forskelle i, hvor stor nedbrydningen af knoglevæv er i forskellige regioner af kroppen. Generelt er nedbrydningen størst i de store vægtbærende knogler i benene, mens de knogler som ikke normalt er vægtbærende (f.eks. i armene), vil være upåvirkede eller meget mindre påvirkede af manglende tyngdekraftpåvirkning.

Fra dyrestudier har man længe vidst, at senevævets elastiske egenskaber påvirkes af inaktivitet. I nyere studier er det nu også vist hos unge raske mænd, at senevævets stivhed reduceres markant efter 3-12 ugers sengeleje (96;97). Da senevævets rolle er at overføre kraft mellem musklerne og skelettet, vil en nedsættelse af senevævets stivhed betyde, at kraftoverførslen bliver langsommere. Samtidig kan senevævsnedbrydningen være en potentiell risikofaktor for udvikling af vævsskader ved store pludselige belastninger af senevævet.
4.2.7 Stofskifte
Muskernes glukoseoptagelse reguleres bl.a. af hormonet insulin og er meget væsentlig for reguleringen af glukosekoncentrationen i blodet. Det har været kendt længe, at insulinfølsomheden og evnen til at regulere blodglukoseniveauet er nedsat efter inaktivitet (98). Som omtalt ovenfor udløser inaktivitet atrofi i musklerne, hvilket fører til et tab af muskelmasse. Dette betyder, at kroppen har mindre muskelvæv til at optage glukose i. En anden væsentlig årsag er, at muskernes insulinfølsomhed nedsættes allerede efter 1 uges immobilisering (99) eller 1 uges sengeleje (100), formentlig fordi indholdet af det glukosetransporterende protein i muskelcellerne (GLUT4) reduceres. Således er det vist, at ved immobilisering (101), sengeleje (102) eller ophør af regelmæssig træning (103) reduceres muskernes indhold af GLUT4. Reduceret muskelaktivitet vil således på flere måder bidrage til, at GLUT4-indholdet i musklerne nedsættes, hvilket anses for en væsentlig faktor i udviklingen af insulinresistens. Endelig vil den nedsatte kapillarisering, som ses efter inaktivitet, også kunne bidrage til insulinresistens. Insulinresistens er som bekendt en risikofaktor for udviklingen af type 2-diabetes og andre livsstilssygdomme.

I muskler, der har været inaktive i en periode, ses et generelt skift i musklernes valg af substrat til dækning af energiforbrug, således at muskernes evne til at oxidere fedt reduceres samtidig med, at deres potentiale for glykolyse øges (104). Samtidig ses ofte en akkumulation af fedt i muskelvævet. Det vides i dag, at en akkumulering af fedt i musklerne er med til at skabe en nedsat insulinfølsomhed (105).

4.3 Biologiske mekanismer

Da nogle af de manglende påvirkninger af kroppens væv ved inaktivitet er af rent mekanisk karakter anses det for sandsynligt, at der ved mekaniske påvirkninger udløses
en eller flere vækstfaktorer. Der er for nyligt identificeret en vækstfaktor, som reagerer på mekaniske signaler i muskelceller: Mechano growth factor (MGF) (106). Man kender til adskillige vækstfaktorer i de forskellige væv, som kan tænkes at være medvirkende/manglende i vævstilpasninger til inaktivitet, men der savnes stadig viden om hvilke signalveje, der medvirker i kroppens tilpasninger til inaktivitet. Formentlig er der til en vis grad blot tale om manglende aktivering af de signalveje som vides at medføre ændringer som følge af øget aktivitet (107).

4.4 Sammenfatning

Af det ovenstående fremgår det, at studier af inaktivitet har vist, at kredsløbet, stofskiftet og det muskuloskeletale system ændrer sig hurtigt og markant, når kroppen udsættes for inaktivitet. Ændringerne i de forskellige væv og organsystemer bidrager på kort sigt til en markant reduceret arbejdskapacitet primært fordi kredsløbets iltbærende kapacitet nedsættes, og fordi musklernes evne til kraftudvikling formindskes.

På længere sigt peger inaktivitetsstuderne på nogle risikofaktorer for sygdomsudvikling:

• Den reducerede aerobe kapacitet, som følge af inaktivitet, kan anses for at være en selvstændig risikofaktor for udvikling af hjerte-/kredsløbs-sygdomme.
• Muskeltabet vil bidrage til en dårligere arbejdsevne og eventuelt et funktionstab.
• Inaktiviteten medfører et tab af knoglevæv, hvilket kan være en prædisponerende faktor for udvikling af osteoporose.
• Den observerede insulinresistens kan anses for at være prædisponerende for udvikling af type 2-diabetes.
5. Fysisk inaktivitet og de store folkesygdomme

5.1 Introduktion

De otte sygdomme er:

1. Type 2-diabetes (aldersdiabetes)
2. Forebyggelige kræftformer
3. Hjerte-kar-sygdomme
4. Knogleskørhed (osteoporose)
5. Muskel- og skeletlidelser
6. Overfølsomhedssygdomme (astma-allergi)
7. Psykiske lidelser
8. Rygerlunger (KOL)

Der er talrige studier, der viser, at regelmæssig fysisk aktivitet nedsætter risikoen for tidlig død (2). De samme studier kan omvendt tolkes således, at fysisk inaktivitet øger risikoen for tidlig død. Ud fra en opfattelse af, at det er normalt for mennesket at være aktivt, er det blevet foreslået, at det er de fysisk aktive personer og ikke de fysisk inaktive personer, der skal udgøre en kontrolgruppe i en undersøgelse af fysisk aktivitet (108).

Problemer med omvendt kausalitet i studier vedrørende fysisk aktivitet og helbred har været vurderet i mange undersøgelser (109-113). I flere studier ekskluderes personer med kræft eller hjertesygdomme eller personer, der er begrænsede i deres fysiske formåen. Eksklusionen kan ske på basis af selvrapporterede oplysninger eller registeroplysninger. I mange studier kontrolleres der for sygdom eller helbredsstatus i analysen, men i flere studier er det anført, at selv med kontrol for angivet sygdom er der risiko for, at nogle subkliniske tilstande på undersøgelsestidspunktet kan have indvirket på aktivitetsniveauet og i sidste instans på dødeligheden (114).
I de fleste observationsstudier angives typisk den relative risiko (RR) ved at være fysisk aktiv i forhold til at være fysisk inaktiv. I overensstemmelse med at der er en sundhedseffekt af at være fysisk aktiv, fremgår det af studierne, at relative risikoværdier er <1. Man kan i nogle tilfælde selv beregne effekten af at være fysisk inaktiv ved at lade den fysisk aktive gruppe fungere som kontrol. Hvis den fysisk aktive gruppe f.eks. har en relativ risiko = 0,50 for en given sygdom, kan den reciproke størrelse udtrykkes således, at den fysisk inaktive gruppe har en relativ risiko = 2,0 for udvikling af samme sygdom. I nogle tilfælde sammenlignes forskellige fysisk aktivitetsgrupper med en fysisk inaktiv kontrolgruppe, og det vil være vanskeligt direkte at angive betydningen af fysisk inaktivitet. Det er derfor valgt i denne rapport at angive de risikoestimater, der er angivet i originalliteraturen. I nogle studier har man valgt at opgive relativ risiko-værdier ved at være fysisk inaktiv i forhold til at være fysisk aktiv. I sådanne tilfælde vil relativ risiko typisk være >1.

Der findes ingen randomiserede studier, hvor man ved lodtrækning har inddelt raske personer i en inaktiv gruppe med begrænset fysisk aktivitet og en kontrolgruppe for derefter at vurdere kliniske end-points som f.eks. hjertesygdom, kræft eller type 2-diabetes. Der findes mange studier, hvor man har randomiseret personer med særlig risiko for udvikling af sygdom, som f.eks. personer med patologisk glukosetolerance og hyperkolesterolæmi eller personer med sygdom, f.eks. iskæmisk hjertesygdom, og vurderet effekten af træning på kliniske variable (7).
Fysisk inaktivitet som intervention er ikke blot et spejlbillede af fysisk aktivitet som intervention. Fysisk aktivitet påvirker således de molekylære mekanismer forskelligt fra fysisk inaktivitet. I mangel af bedre er der dog i denne rapport i et vist omfang rapporteret erfaringer vedrørende fysisk aktivitet som intervention.

I det følgende gennemgås betydningen af fysisk inaktivitet i relation til folkesygdommene. Det er vigtigt at fremhæve, at litteraturgennemgangen vedrører den selvstændige betydning af fysisk inaktivitet efter justering for andre variable, der kan påvirke resultaterne, herunder fedme.

Den tilgængelige litteratur omfatter observationsstudier baseret på spørgeskemaundersøgelser. Der findes ikke interventionsstudier med inaktivitet som intervention. I de tilfælde, hvor der findes randomiserede kontrollerede træningsstudier af relevans for de otte folkesygdomme, vil disse blive omtalt.

5.2 Type 2-diabetes

Insulinresistens medfører patologisk glukosetolerance. 40 % af personer med patologisk glukosetolerance udvikler type 2-diabetes (aldersdiabetes) i løbet af 5-10 år, mens nogle forbliver insulinresistente, og andre genvinder normal glukosetolerance. Fysisk inaktivitet er en væsentlig faktor, når det gælder progression fra en insulinresistentstilstand karakteriseret ved patologisk oralglukosetolerance til manifest type 2-diabetes.

5.2.1 Observationsstudier: Fysisk inaktivitet og type 2-diabetes

I flere observationsstudier er der fundet en klar sammenhæng mellem fysisk inaktivitet og forekomsten af type 2-diabetes hos mænd og kvinder. Både dårlig kondition og fysisk inaktivitet var uafhængige prædiktorer for tidlig død hos mænd med type 2-diabetes, når man sammenlignede med mænd med en god kondition (116). The Coronary Artery Risk Development in Young Adults (CARDIA)-studiet er et longitudinalt studie, hvor sammenhængen mellem kondition og kardiovaskulære risikofaktorer blev undersøgt i en omfattende undersøgelse af unge mænd og kvinder. I dette studie fandt man, at de mænd, der ikke var svært overvægtige men havde en dårlig kondition, havde 3,66 gange større risiko for at udvikle type 2-diabetes sammenlignet med de mænd, der havde en god kondition. Ved at øge konditionen i løbet af de efterfølgende 7 år blev der fundet en nedsat risiko for type 2-diabetes (relativ risiko på 0,4) (117).
I The University of Pennsylvania Alumni Health Study (118), som omfattede 5.990 mænd, var fysisk aktivitet i fritiden omvendt relateret til udviklingen af type 2-diabetes. For hver 500 kcal/uge som blev forbrugt ved fysisk aktivitet, var der en risikoreduktion på 6 % for at udvikle type 2-diabetes. Et lignende resultat blev fundet i The Physicians’ Health Study (119). Her blev 21.271 mænd i alderen 40-84 år ved baseline fulgt gennem 5 år. Ved studiets start havde ingen af deltagerne type 2-diabetes. Det viste sig, at de mænd, der var fysisk aktive én gang om ugen, havde en aldersjusteret relativ risiko for type 2-diabetes på 0,64 i sammenligning med de mænd, der ikke var aktive én gang om ugen.

Ligeledes fandt man blandt 6.815 japansk-amerikanske mænd i The Honolulu Heart Program, at en 6-års aldersjusteret ratio for type 2-diabetes var 0,5, når de mest aktive mænd (øverste kvintil) blev sammenlignet med de mindst aktive (fire laveste kvintiler) (120).

Endvidere fandt man i et studie, udført på mandlige læger, at den relative risiko for type 2-diabetes var nedsat i relation til en øget mængde fysisk aktivitet. Således viste undersøgelsen en relativ risiko på 0,77, hvis man var fysisk aktiv én gang om ugen; 0,62 ved 2-4 gange pr. uge og 0,58 ved 5 eller flere gange om ugen (119). Hu og medarbejdere (121) viste i et studie, omfattende mere end 14.000 finske mænd og kvinder at fysisk aktivitet i jobsituationen, i fritiden og gang til og fra arbejde signifikant reducerede risikoen for at udvikle type 2-diabetes i løbet af 12 års opfølgningsperiode.

Manson og medarbejdere (122) undersøgte sammenhængen mellem regelmæssig hård fysisk aktivitet og risikoen for type 2-diabetes i en gruppe (n=87.253) af amerikanske kvinder i alderen 34-59 år. I løbet af en opfølgningsperiode på 8 år blev der konstateret 1.303 tilfælde af type 2-diabetes. Kvinder, der var engageret i intens fysisk aktivitet mindst én gang om ugen, havde en aldersjusteret relativ risiko på 0,67 for at få type 2-diabetes i sammenligning med kvinder, der ikke var fysisk aktive.

Andre studier har vist, at en fysisk inaktiv hverdag med mange timers tv-kigning dagligt var associeret med en øget risiko for type 2-diabetes. Eksempelvis fandt man blandt 37.918 mænd, at i sammenligning med 0-1 times tv-kigning pr. uge var henholdsvis >21 og >40 timers tv-kigning pr. uge associeret med en relativ risiko på 2,16 og 2,87 respektivt for udvikling af type 2-diabetes over en 10-årig periode (123;124).
I det prospektive Nurses’ Health Study (125), der involverede 50.277 forsøgspersoner, fandt man ligeledes, at mange timers tv-kigning dagligt og stillesiddende aktiviteter generelt (f.eks. at køre i bil eller sidde stille på arbejde) var associeret med en øget risiko for både type 2-diabetes og fedme.

5.2.2 Randomiserede studier: Fysisk inaktivitet og type 2-diabetes

I en kinesisk undersøgelse blev 577 personer med patologisk glukosetolerance inddelt i 4 grupper: Diæt, træning, diæt+træning eller kontrolgruppe og blev efterfølgende fulgt i 6 år (126). Risikoen for type 2-diabetes blev reduceret med 31 % (p<0,03) i diætgruppen, med 46 % (p<0,0005) i træningsgruppen og med 42 % (p<0,005) i diæt+træningsgruppen i forhold til kontrolgruppen. Ligeledes fandt man i to randomiserede kontrollerede studier, der inkluderede personer med patologisk glukosetolerance, at livsstilsændringer beskyttede mod udviklingen af type 2-diabetes. I en finsk undersøgelse blev 522 overvægtige midaldrende personer med patologisk glukosetolerance randomiseret til enten fysisk træning, kombineret med diæt, eller til en kontrolgruppe (127) og blev efterfølgende fulgt i 3,2 år. Resultaterne af studiet viste, at risikoen for type 2-diabetes var reduceret med 58 % i interventionsgruppen, og at effekten var størst hos de patienter, der gennemførte de mest omfattende livsstilsændringer (128;129).

I et amerikansk studie randomiserede man 3.234 personer med patologisk glukosebelastning til enten behandling med metformin, til et livsstilsprogram (150 minutters ugentlig fysisk træning og diæt) eller ingen intervention. Herefter fulgte man forsøgspersonerne i en periode på 2,8 år (130). Livsstilsinterventionsgruppen havde en reduceret risiko på 58 % for at få type 2-diabetes. Reduktionen var således den samme som i den ovenfor nævnte undersøgelse (127), mens behandling med metformin kun reducerede risikoen for type 2-diabetes med 31 %.

Hvis fysisk inaktivitet defineres som mindre end 2,5 timer fysiske aktiviteter af moderat intensitet pr. uge, kan man udlede af ovenstående studier af Lindstrøm og medarbejdere (128), at fysisk inaktivitet fordobler risikoen for type 2-diabetes hos personer med patologisk glukosebelastning i forhold til personer, der følger de officielle anbefalinger for fysisk aktivitet.
Der foreligger en metaanalyse fra 2001, der vurderer effekten af mindst 8 ugers fysisk træning på glykæmisk kontrol hos personer med type 2-diabetes (131). Efter interventionen var HbA1c (glykeret hæmoglobin) lavere i træningsgruppen end i kontrolgruppen (7,65 % versus 8,31 %, dvs. en forskel på 0,66 %, p<0,001). Til sammenligning gav intensiv glykæmisk kontrol med metformin en reduktion af HbAc1 på 0,6 %, men en reduktion af risikoen på 32 % for diabetesrelaterede komplikationer og på 42 % for diabetesrelateret mortalitet (132). En metaanalyse omfattende 95.783 personer viste, at fasteblodsukker er stærkt relateret til den kardiovaskulære morbiditet (133). Effekten af fysisk træning på HbAc1 har således en klinisk relevant effekt.

5.2.3 Konklusion

Der er betydelig evidens for, at fysisk inaktivitet øger risikoen for type 2-diabetes. Der er endvidere holdepunkter for, at fysisk inaktivitet forværrer glykæmisk kontrol for personer med manifest type 2-diabetes.

5.3 Kæft

samt vanskelig livssituation medfører fysisk inaktivitet. Kemoterapien medfører øget risiko for infektioner og bidrager til fysisk inaktivitet og dermed muskelmassetab og nedsat kondition. Det har været estimeret, at så meget som 1/3 af kræftpatienters dårlige fysiske tilstand kunne tilskrives fysisk inaktivitet (139).

5.3.1. Fysisk inaktivitet og tarmkræft

Der er ca. 2.500 nye tilfælde pr. år af kræft i tyktarmen. Femårsoverlevelsen er 32 % for mænd og 39 % for kvinder. Tarmkræft (tyktarmskræft og endetarmskræft) er den næsthyppestående årsag til kæftdød og den tredjehyppestående kræftform for mænd og kvinder (140). Tarmkræft er den hyppestående kræfttype i forhold til fysisk inaktivitet. Ifølge Friedenreich og Orenstein (141) er der stærk evidens for en association mellem fysisk inaktivitet og tyktarmskræft, og det er således blevet foreslået, at fysisk inaktivitet er den vigtigste risikofaktor assosieret med tyktarmskræft (142). En rapport om fysisk aktivitet og kæft fra IARC angiver, at den ætiologiske fraktion for tyktarmskræft er 13-14 % på grund af fysisk inaktivitet. Der er ikke fundet en association mellem fysisk aktivitetsniveau og endetarmskræft.

I et review af Friedenreich og Orenstein (141) blev det konkluderet, at sammenhængen mellem fysisk aktivitet og tyktarmskræft var overbevisende. Case-kontrol studier og prospektive kohortestudier omhandlende tyktarmskræft viste en risikoreduktion blandt de mest fysisk aktive mænd og kvinder med en risikoreduktion på 40-50 %. Blandt de 29 studier, hvor dosisrespons-effekt af fysisk aktivitet blev vurderet, fandt man i 25 studier en øget risiko for tyktarmskræft med faldende fysisk aktivitetsniveau.

I det danske Kost, Kræft og Helbred-kohortestudie med 28.356 kvinder og 26.122 mænd i alderen 50-64 år (ved studiets start) var der ingen sammenhæng mellem risikoen for tyktarmskræft og arbejdsrelateret fysisk aktivitet eller fysisk aktivitet i fri-tiden efter 7,6 års follow-up. Det så dog ud til, at der var en invers sammenhæng mellem antallet af aktiviteter, som en deltager var aktiv i og risikoen for tyktarmskræft. For hver ekstra aktivitet en deltager var aktiv i, var den relative risiko 0,87 for kvinder og 0,88 for mænd, men justering for potentielle risikofaktorer for tyktarmskræft formindskede denne sammenhæng (143).

I The European Prospective Investigation into Nutrition and Cancer med 413.044 mænd og kvinder fandt man en invers sammenhæng mellem total fysisk aktivitet
(arbejds- og fritidsrelateret fysisk aktivitet samlet) og risiko for tyktarmskræft. Den relative risiko for tyktarmskræft var på 0,78 blandt de mest aktive mænd og kvinder, sammenlignet med de inaktive mænd og kvinder. I studiet fandtes ingen sammenhæng mellem arbejdsmobilitet fysisk aktivitet eller øget intensitet af fysisk aktivitet i fritiden, når disse blev undersøgt alene (144).

Fysisk inaktivitet påvirker formentlig udviklingen af tyktarmskræft via talrige faktorer. Det har været almindeligt antaget, at transittiden generelt er øget ved fysisk inaktivitet, og at tarmens eksplosion over for karzinogene derfor er øget hos den fysisk inaktive (145). Der er imidlertid ikke videnskabeligt holdepunkt herfor (146-148). I studier, hvor transittid i tyktarmen blev vurderet efter fysisk aktivitet, fandt man at denne enten blev nedsat (149) eller var uændret (150;151) mens der i ét studie blev fundet, at akut fysisk aktivitet hæmmede tyktarmsmotilitet (152). Dertil skal medtages, at fysisk inaktivitet bidrager til en tilstand af kronisk "low-grade"-inflammation og insulinresistens med høje, cirkulerende insulinniveauer, som måske kan øge tumorudviklingen (153;154).

5.3.2 Fysisk inaktivitet og brystkræft

Der er ca. 4.000 nye tilfælde af brystkræft om året i Danmark, og antallet af brystkræfttilfælde er stigende. Brystkræft er den hyppigste kræftform blandt kvinder. Femårsoverlevelsen for brystkræft er henholdsvis 68 % og 47 %. Sammenhængen mellem fysisk inaktivitet og brystkræft er mindre konsistent end for tyktarmskræft, samtidig er styrken af sammenhængen lidt svagere end set for tyktarmskræft.

I The European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, blev 218.169 præmenopausale og postmenopausale kvinder fulgt op for brystkræft i en gennemsnitlig periode på 8,4 år. I studiet blev det vist, at total fysisk aktivitet (arbejds- og fritidsrelateret fysisk aktivitet samlet) kun var relateret til en nedsat risiko for brystkræft blandt de postmenopausale kvinder og ikke de præmenopausale kvinder.
Det foreslås i flere studier, at effekten af fysisk aktivitet er forskellig for personer med forskelligt BMI, og at den største effekt findes hos kvinder med normal vægt (BMI < 25). I The Women's Health Initiative Study fandt man, at let til moderat fysisk aktivitet (gang 30 minutter pr. dag) var associeret med 20 % risikoreduktion for brystkæft blandt postmenopausale kvinder. Effekten var størst for normalvægtige kvinder, som opnåede en risikoreduktion på 37 %, mens der ikke fandtes en signifikant positiv effekt for overvægtige eller svært overvægtige kvinder. Ligeledes i det ovennævnte EPIC studie fandtes det, at den inverse relation mellem total fysisk aktivitet og risiko for brystkæft i de postmenopausale kvinder tenderede til at være stærkest hos de slanke kvinder (BMI < 25) sammenlignet med overvægtige kvinder og svært overvægtige kvinder, men sammenhængen var dog ikke signifikant.

I en rapport fra The International Agency for Research on Cancer (IARC, som er en del af WHO) tilskrives 11 % af alle tilfælde af postmenopausal brystkæft fysisk inaktivitet (162). Biologiske mekanismer omfatter måske effekten af fysisk inaktivitet på hormoner, stofskifte, kropsvægt, kropsammensætning og immunfunktion. Brystkæft forekommer med øget hyppighed hos personer med type 2-diabetes og metabolisk syndrom, og det er muligt, at fysisk inaktivitet øger risikoen for brystkæft ved at bidrage til low-grade kronisk inflammation og hyperinsulinæmi (141;161;163;164).

5.3.3 Fysisk inaktivitet og andre udvalgte kræftformer
I et mindre antal studier har man vurderet en mulig association mellem fysisk inaktivitet og øget risiko for kæft. Det fremgår af disse studier, at fysisk aktive mænd formentlig har 10-30 % reduceret risiko for at få prostatakæft, mens fysisk aktive kvinder har 30-40 % reduceret risiko for at få livmoderkæft med størst effekt hos de mest aktive (141;165-168;169;170).

5.3.4 Observationsstudier: Fysisk inaktivitet og prognose efter en kræftdiagnose
Mens der er epidemiologisk evidens for, at fysisk inaktivitet muligvis øger risikoen for brystkæft og kæft i tyktarmen (171), er der ikke dokumentation for en direkte effekt af fysisk træning på forløbet af kæft. Målet for den fysiske træning af kræftpatienten har derfor været en positiv effekt på kondition, muskelstyrke, psykisk velvæstende, angst, depression og livskvalitet i videste forstand.
Nye studier viser imidlertid, at kræftoverlevelsen er bedre hos patienter, der er fysisk aktive i forhold til inaktive. I et prospektivt observationsstudie baseret på 2987 amerikanske kvinder blev det vist, at fysisk aktivitet efter en brystkræftdiagnose var relateret til en reduceret risiko for at dø af brystkræften. Den største effekt fandt man hos kvinder, som var fysisk aktive aværende til at gå 2-5 timer pr. uge (172). Ligeledes fremgår det af data fra to amerikanske observationsstudier, at et øget fysisk aktivitetsniveau efter en endetarmskræft-diagnose var relateret til en nedsat risiko for at dø af selve kræftsygdommen (173;174).

5.3.5 Randomiserede studier: Fysisk inaktivitet og prognose efter en kræftdiagnose

5.3.6 Konklusion
Der er god evidens for, at fysisk inaktivitet øger risikoen for tarmkræft og brystkræft. Dette gælder muligvis også for prostatakræft og livmoderkræft. Der er endvidere holdepunkter for, at fysisk inaktivitet, efter at man har fået stillet diagnosen tarmkræft og brystkræft, øger risikoen for at dø af denne sygdom.

5.4 Hjerte-kar-sygdomme
Iskæmisk hjertesygdom er en fælles betegnelse for hjertesygdom, forårsaget af myokardieiskæmi som følge af utilstrækkelig regional gennemblødning i forhold til myokardiets ittbehov. Den mest almindelige årsag er aterosklerose i koronarkarrene.
Myokardieiskæmi af en varighed på mere end ca. 20 minutter fører til celledød (infar-
cering), med mindre der er et veludviklet kollateralt kredsløb. Iskæmisk hjertesygdom
manifesterer sig som kronisk stabil angina pectoris, anfaldsvis og kronisk hjerteinsuf-
fi ciens, anfaldsvis kronisk hjertearytmie, akut ustabil angina pectoris, akut myokardie-
infarkt (AMI) og pludselig død.

Den samlede population af patienter med manifest iskæmisk hjertesygdom i Danmark
skønnes at være 150.000-200.000. Årligt indlægges ca. 33.000 mennesker med iskæ-
misk hjertesygdom eller dør af sygdommen uden at være indlagt (som hovedregel
AMI og angina pectoris). Hertil kommer 16.000 mennesker, der behandles ambulant
for iskæmisk hjertesygdom. Årligt indlægges 12.000 med AMI, heraf dør 4.000, 2.300
mænd og 1.700 kvinder (177).

5.4.1 Observationsstudier: Fysisk inaktivitet og hjerte-kar-sygdomme

Der er konsensus om, at fysisk inaktivitet er en væsentlig patogenetisk faktor ved ud-
viklingen af hjerte-kar-sygdomme (178). I The Harvard Alumni Health Study, hvor man
fulgte 12.516 midaldrende og ældre mænd fra 1977 til 1993, viste det sig, at både den
totale mængde af fysisk aktivitet såvel som intens fysisk aktivitet var forbundet med
en markant reduktion i udviklingen af hjerte-kar-sygdomme (179). Blair og medarbej-
dere (180) fandt ligeledes en omvendt relation mellem konditionsniveau og både død
af alle årsager og hjertedød hos mere end 13.000 personer (181).

I Nurses’ Health Study (125) fandtes, at 30-40 % af al hjertesygdom kunne forebygges
ved lot til moderat fysisk aktivitet (gang) mere end 2,5 timer pr. uge sammenlignet
med mindre aktivitet. I Harvard Alumni-studiet fandt man, at mortalitetsrisikoen, pri-
mærkt af kardiovaskulær sygdom, varierede inversed med kalorier, forbrugt ved fysisk
aktivitet (182). Hvis dette blev omsat til tid forbrugt på moderat fysisk aktivitet, fandt
man den samme beskyttende effekt i alle studier.

I et studie omfattende 4.276 mænd var den relative risiko for hjertedød 3 gange
højere blandt personer med lav kondition, uafhængigt af konventionelle kardiovasku-
lære risikofaktorer (183), og adskillige studier dokumenterer, at fysisk inaktivitet er
sammenlignelig med konventionelle risikofaktorer, når det gælder at prognosticere
risiko for hjertesygdom (184;185). Laukkanen og medarbejdere (186) fandt en omvendt
relation mellem maksimal iltoptagelse og relativ risiko for kardiovaskulær død, idet
høj itoptagelse var associeret med langsomm progression af carotis arteriosklerose, vurderet ved ultralyd (187).

5.4.2 Randomiserede studier: Fysisk inaktivitet og hjerte-kar-sygdomme
Der er særdeles god evidens for en positiv effekt af fysisk træning for patienter med iskæmisk hjertesygdom. På baggrund af en metaanalyse fra 2004 (188) baseret på 48 randomiserede, kontrollerede studier, kan det konkluderes, at fysisk træning forbedrer overlevelsen og antages at have direkte effekt på sygdomspatogenesen.

Patienterne var typisk blevet randomiseret på tidspunktet for AMI eller op til 6 uger efter og fulgt gennemsnitligt i 2,4 år. Det viste sig, at regelmæssig fysisk træning alene reducerede mortaliteten af alle årsager med 20 % (odds ratio: 0,80; 0,68-0, 96) samt reducerede hjertemortaliteten med 26 % (odds ratio: 0,74; 0,61-0,96).

5.4.3 Konklusion
Der er betydelig evidens for, at fysisk inaktivitet øger risikoen for senere hjerte-kar-sygdom. Der er ligeledes betydelig evidens for, at fysisk inaktivitet øger den kardiovaskulære mortalitet hos personer med iskæmisk hjertesygdom.

5.5 Knogleskørhed (osteoporose)

I en række studier er det vist, hvilke former for fysisk belastning, som er nødvendige for opbygning og vedligeholdelse af knoglevæv. Idræts grene, præget af gentagne kraftige accelerationer og opbremsninger og dermed stor kraftpåvirkning af skelettet, giver den største knogleanabolisk effekt. Således virker squash, tennis og badminton mere anabol på knoglerne end ikke vægtbærende aktiviteter, som cykling og
svømning. Den anabole effekt af kraftpåvirkninger afhænger af såvel retning, som amplitude og frekvens, dækkende et bredt spektrum fra ganske få daglige kraftpåvirkninger til højfrekvent, lavenergipåvirkning, f.eks. apliceret ved hjælp af en vibrationsplade.

Det cellulære system, som ligger bag denne mekanostat er afdækket inden for de seneste år. Det er ligeledes vist, at den anabole effekt af belastning er størst i puberteten og er afhængig af tilstedevarelse af østrogenreceptor alfa (ER) og dermed mindre følsom efter menopausen. Når det mekaniske stimulus afsættes i knoglevævet, fører det til væskesætning i de cellulære udløbere, som forbinder osteocytters indbyrdes samt osteoblasters, som igen medfører frigørelse af signalmolekyler og vækstfaktorer. Da systemet således responderer på lokal påvirkning, rummer det mulighed for, at den anabole effekt sætter ind præcis, hvor kraftpåvirkningerne kræver det. Denne viden kan danne baggrund for rådgivning om hvilke former for træning, som må tilrådes for at forebygge udvikling af osteoporose, ligesom systemet indirekte kan modificeres gennem påvirkning af nævnte signalmolekyler og vækstfaktorer (95).

5.5.1 Observationsstudier: Fysisk inaktivitet og knogleskørhed
Mangel på vægtbærende motion hos børn inden puberteten har stor indflydelse (192). I et longitudinelt studie fra Holland, hvor unge er blevet fulgt over en 15-årig periode, viste det sig, at daglig fysisk aktivitet i barndom og ungdom er signifikant relateret til knoglemineralæthed (bone mineral density = BMD) i ryg og hofte ved 28-års-alderen (193).

Overdreven fysisk aktivitet kan dog også have utilisigtede negative konsekvenser, også for knoglerne. Således kan piger med træningsassocieret sekundær amenorré udvikle knoglemineraltab med senere øget risiko for knogleskørhed og er (om end reversibelt) sterile med nedsat libido (198).

5.5.2 Randomiserede studier: Fysisk inaktivitet og knogleskørhed
Der er evidens for, at aerob træning kan øge knoglemineraltaætheden. Der foreligger en metaanalyse fra 2002 (199), der vurderer effekten af aerob træning eller styrketræning på knoglemineraltaæthed hos postmenopausale kvinder. Metaanalyseren inkluderede 18 randomiserede kontrollerede forsøg (n=1.423 personer). Kvinderne var ikke identificeret med hensyn til, om de havde eller ikke havde osteoporose. Både aerob træning og styrketræning havde positiv effekt på rygsøjlenes knoglemineraltaæthed (1,79; 95 % CI (0,58; 3,01)). Moderat træning i form af gang havde positiv effekt på både rygsøjle og hofte, mens aerob træning alene havde effekt på håndledet.

I en nyere metaanalyse blev betydningen af gang på knoglemineraltætheden vurderet. I analysen indgik mænd og postmenopausale kvinder over 50 år. Resultatet af analysen viste, at gang havde en signifikant positiv effekt på knoglemineraltætheden i lænden, mens der ikke kunne påvises nogen effekt på knoglemineraltætheden i lårben og hæl (206).

5.5.3 Konklusion
Der er god evidens for at fysisk inaktivitet eller mangel på vægtbærende aktiviteter i barndommen øger risikoen for knogleskørhed. Der er endvidere holdepunkter for, at fysisk inaktivitet hos voksne forværer det aldersrelaterede knoglemineraltab. Omvendt har flere metaanalyser peget på en positiv effekt af fysisk træning på specielt knoglemineralindhold i ryggen, men også på betydningen af typen af træning.

5.6 Muskel- og skeletlidelser
Muskel- og skeletlidelser omfatter talrige sygdomme og symptomkomplekser. I dette afsnit gennemgås to udbredte diagnosegrupper, artrose samt ryg- og bækkensmerter, hvor fysisk inaktivitet kan spille en rolle for udviklingen.

5.6.1 Artrose
5.6.2 Observationsstudier: Fysisk inaktivitet og artrose

Der er mangel på studier, der kan belyse om der er en sammenhæng mellem fysisk inaktivitet, uafhængigt af kropsvægt, og senere udvikling af artrose.

5.6.3 Randomiserede studier: Fysisk inaktivitet og artrose

5.6.4 Rygsmarter

Lænderygbesvær er en af de hyppigste smertetilstande i den danske befolkning; 35-50 % af den voksne befolkning oplyser at have haft forbigående eller konstante smertor i lænderyggen inden for det sidste år, mens godt 20 % har haft gener inden for de sidste 14 dage (230). I 1994 var antallet af sengedage (indlæggelser) på sygehus i Danmark pga. entydig symptomgivende diskus- og hvirvellidelse mere end 120.000. Gruppen af sygdomme i ryghvirvler, diskusprolaps, slidgigt og beslægtede tilstande opgøres til 330.000 sygedage ud af i alt 7,3 mio. sengedage ved de somatiske sygehuse i Danmark.

Selv efter grundig og korrekt udredning, kan der hos 70-80 % af personer med lænderygbesvær ikke stilles en specifik diagnose. Siddende arbejde har været mistænkt som disponerende faktor til lændesmarter, men en nylig metaanalyse fandt ikke videnskabeligt grundlag for denne antagelse (231).

Kroniske lænderygsmener har været associeret med lav fysisk aktivitet i flere studier, men disse studier belyser ikke, om fysisk inaktivitet er en årsag til eller en konsekvens af rygsmerner (233-236).

5.6.5 Observationsstudier: Fysisk inaktivitet og rygsmerner

5.6.6 Randomiserede studier: Fysisk inaktivitet og rygsmerner

Ifølge en metaanalyse fra The Cochrane Database (239) er der stærk evidens for, at fysisk træning ikke er effektiv i behandlingen af akut lænderygbesvær. Effekten af strengt sengeleje på lænderygsmerner blev ligeledes vurderet i en metaanalyse (240;241), baseret på 4 randomiserede kontrollerede studier (N=491 patienter). Effekten af sengeleje blev sammenlignet med almindelig fysisk aktivitet hos patienter med akut lænderygbesvær. I disse to studier fandt man flere sygedage i de grupper, der blev behandlet med sengeleje, i forhold til de grupper, der forholdt sig fysisk active.

5.6.7 Konklusion
Der er nogen, men beskeden evidens for, at en fysisk inaktiv livsstil er associeret med ryg- og bækkensmerter, mens der ikke foreligger evidens for, at en fysisk inaktiv
livsstil, uafhængigt af kropsvægt, er disponerende for artrose. Modsat dette, er der god dokumentation for, at regelmæssig fysisk aktivitet kan have en positiv effekt på smerner og evnen til at klare sig i dagligdagen.

5.7 Overfølsomhedssygdomme - astma-allergi
Det er dårligt belyst, om fysisk inaktivitet er årsag til allergi eller astma. I et helt nyt studie, omfattende 2.429 børn, blev det vist, at fysisk inaktive børn havde mere end dobbelt så stor risiko for høfeber end fysisk aktive børn [OR 2,39 (95 % CI 1,31-4,36)] (242). I et studie omfattende voksne kvinder, fandt man en lineær association mellem body mass index (BMI) og høfebersymptomer, men ingen direkte sammenhæng til fysisk aktivitet (243).

I et finsk tvillingestudie fandt man, at fysisk aktivitet nedsatte risikoen for astma (244;245). I overensstemmelse med dette fandt man i et andet studie, at fysisk inaktivitet i barndommen var associeret til udvikling af astma hos unge voksne (246). I relation til fysisk aktivitet viser resultater af nogle studier, at astmatikere har en ringe kondition (247-249), mens dette ikke kan påvises i andre studier (250).

Sammenhængen mellem fysisk inaktivitet og udvikling af astma er således usikker, men fysisk træning udgør et særligt problem for personer med astma. På den ene side kan fysisk aktivitet provokere bronkokenstrktion hos de fleste astmatikere (251). På den anden side har mennesker med astma brug for instruktion i, hvordan de kan forebygge anstrengelsesudløste symptomer, således at de som andre mennesker kan få gavn af de positive effekter af motion mod øvrige sygdomme. Regelæggingsfysisk aktivitet bør derfor indgå som et vigtigt led i rehabiliteringen af astma og i patient-uddannelsen. Uanset patientens fysiske form er vejledning og medicin vigtig, således at alle har mulighed for at dyrke fysisk aktivitet uden at være bange for symptomerne.

5.7.1 Konklusion
Der er yderst beskeden evidens for en mulig sammenhæng mellem fysisk inaktivitet og overfølsomhedssygdomme.

5.8 Psykiske lidelser
Psykiske lidelser omfatter talrige sygdomme og symptomkomplekser. I dette afsnit gennemgås to udbredte diagnosegrupper, hvor fysisk inaktivitet kan spille en rolle for udviklingen.
5.8.1 Depression

Omkring 500.000 danskere bliver ramt af en svær depression i løbet af deres liv, og i Danmark er prævalensen 6 %. Endnu flere oplever mildere former for depression og kvinder rammes dobbelt så hyppigt som mænd. Nogle deprimerede føler sig kede af det eller triste, mens andre har svært ved at føle noget overhovedet; et kardinalsymptom er træthed. En deprimeret person plages ofte af skyldfølelse og selvbørgselser over ikke at slå til eller over ting, vedkommende har gjort forkert på et tidligere tidspunkt. Nogle har søvnproblemer. Andre plages af pinefuld indre uro, rastløshed og angst, som gør, at de ikke kan finde hvile. Appletiden er under en depression ofte nedsat. I enkelte tilfælde ses det modsatte – stærkt forøget appetit, specielt efter kulhydratrige madvarer.

Nedenfor er gengivet WHO’s definition på en depression, der kræver behandling. Symptomerne skal være til stede hver dag eller næsten hver dag hele dagen gennem mindst 14 dage. Man ser på følgende symptomer: 1) følelse af nedtrykthed, 2) markant nedsat lyst/interesser, 3) reduceret energi, svær træthed samt mindst 2 af følgende: 1) nedsat selvtillid eller selvfølelse, 2) selvbørgselser, svær skyldfølelse, 3) tanker om død eller selvmord, 4) tænke- og koncentrationsbesvær, 5) svær indre uro eller modsat: Hæmning, 6) søvnforstyrrelser, 7) betydningsfulde ændringer i vægt eller appetit. Opfylder man 2 af de første kriterier og 2 af de næste, har man en mild depression. Til en moderat depression hører mindst 4 af symptomerne fra den anden gruppe. En svær depression har alle 3 symptomer fra første gruppe og 5 af symptomerne fra sidste gruppe.

5.8.2 Observationsstudier: Fysisk inaktivitet og depression

Der eksisterer evidens for, at regelmæssig fysisk aktivitet giver glædesfølelse/mindre dårligt humør, mens fysisk aktivitet hos personer, der er helt fysisk inaktive initiatet er forbundet med dårligt humør (252). Imidlertid vil disse personer, efterhånden som de tilvænner den fysiske aktivitet, herunder typen, mængden og intensitet, også opleve glædesfølelse og en positiv effekt på stemningsløje (252). Steptoe og Butler (253) studerede 5.061 unge 16-årige og fandt, at deltagelse i sport og anden intens fysisk aktivitet var forbundet med psykisk sundhed. Ligeledes blev der rapporteret fra et studie, der omfattede 16.483 studerende, at fysisk aktive studerende havde færre depressionssymptomer end ikke-aktive studerende (254).
Stephens og medarbejdere (255) samlede fire kohortestudier fra USA og Canada (55.000 raske voksne). I dette studie fandt man, at selv rapporteret fysisk aktivitet i fritiden korrelerede med mental sundhed, inklusive færre symptomer på angst og depression efter at have kontrolleret for køn, alder, socioøkonomisk status og fysisk sygdom. Stephens og medarbejdere (255) fandt endvidere at sammenhængen mellem fysisk aktivitet og mental sundhed var størst for de ældre. Det er den regelmæssige træning mere end konditionsniveauet, der er af betydning for sindsstømmen. Det er således fundet, at personer med meget god kondition, men som ikke er fysisk aktive, har lav sindsstømm (256).

5.8.3 Randomiserede studier: Fysisk inaktivitet og depression

Der er nogen evidens for en positiv effekt af fysisk træning som tillæg til den medicinske behandling af milde og moderat svære depressioner. Der foreligger en metaanalyse fra 2001 (261) omfattende 14 studier publiceret i 16 artikler. Når en gruppe, der fik fysisk træning, blev sammenlignet med en kontrolgruppe, der ikke fik behandling, var der signifikant positiv effekt på depressionssymptomer (Becks depressionsskala) (-7,3 95 % CI – 10,0; -4,6). Effekten var sammenlignelig med effekten af kognitiv terapi (261). Forfatterne til metaanalysen (259) nævner dog, at det er vanskeligt at fremkomme med en konklusion på effekten af fysisk træning pga. studiernes metodologiske svaghed. Dette udsagn er delvist blevet modsat (260). Der har hidtil været mangel på studier, hvor det evalueres, om der er en mulig dosisrespons af fysisk aktivitet på depressionssymptomer (261). Ud fra data i et studie (262), der inkluderede 80 personer med let til moderat depression, og som blev randomiseret til 4 forskellige aerobe træningsregimer med hensyn til frekvens og intensitet, blev det konkluderet, at fysisk aktivitet, i mængde svarende til de officielle anbefalinger, havde signifikant effekt på depressionsscore efter 12 uger.
5.8.4 Skizofreni

5.8.5 Konklusion
Der er nogen evidens for at fysisk inaktivitet øger risikoen for senere udvikling af depression. Der er endvidere nogen evidens for, at fysisk inaktivitet forværre depressive symptomer og indirekte evidens for, at fysisk inaktivitet kan bidrage til at forværre symptomerne ved skizofreni.

5.9 Kronisk obstruktiv lungeresygdom
Det skønnes, at mindst 150.000 danskerne har symptomer af kronisk obstruktiv lungeresygdom (KOL) (265). Sygdommen er karakteriseret ved irreversible nedsættelse af lungefunktionen (266). I et avanceret stadi er KOL præget af et langt og pynefuldt forløb med gradvis tiltagende og efterhånden invaliderende åndenød som det vigtigste symptom. På landsplan resulterer sygdommen i ca. 3.000 dødsfald og ca. 25.000 indlæggelser årligt. I de seneste år, i takt med den øgede forekomst af sygdommen, er der et interesser for KOL øget, og der er fremkommet en række nationale og internationale anbefalinger om diagnose og behandling (267-269), og senest også om rehabilitering (270). Der er ingen evidens for, at fysisk inaktivitet er årsag til KOL, men der er international konsensus om, at et rehabiliteringsprogram er en vigtig bestanddel af KOL-behandlingen. Dette er i tråd med erkendelsen af, at den medicamentelle behandling af sygdommen er utilstrækkelig. Med tiltagende svarhedsgrad af KOL ned sættes funktionsniveauet. Efterhånden medfører den tiltagende åndenød angst for at bevæge sig, hvilket medvirker til, at patienterne får en meget stillesiddende livsform. Dette fører på sigt til detræning og udvikling af muskelatrofi, som forvärre åndenø-
den yderligere. Der opstår således en "ond cirkel" med dekonditionering, åndenød, angst og social isolation som de vigtigste komponenter. Rehabilitering griber ind i denne onde cirkel ved hjælp af fysisk træning, psykologisk støtte samt etablering af netværk mellem KOL-patienter.

5.9.1 Observationsstudier: Fysisk inaktivitet og KOL
Der kan ikke identificeres studier, der dokumenterer, at fysisk inaktivitet øger risikoen for KOL.

5.9.2 Randomiserede studier: Fysisk inaktivitet og KOL

5.9.3 Konklusion
Fysisk inaktivitet alene er ikke associeret med kronisk respiratorisk insufficiens, men fysisk inaktivitet forværrer symptomerne ved KOL.

5.10 Sammenfatning
Fysisk inaktivitet øger risikoen for en række kroniske sygdomme, og fysisk inaktivitet har indflydelse på forløbet af visse sygdomme. Dette kapitel fokuserer på de otte store folkesygdomme. Det konkluderes, at der er god evidens for, at fysisk inaktivitet øger risikoen for type 2-diabetes, visse kræftformer, iskæmisk hjertesygdom og osteoporose, mens der er nogen evidens for at fysisk inaktivitet øger risikoen for ryg- og læandesmerter samt depression. Fysisk inaktivitet forværrer den glykæmiske kontrol hos personer med type 2-diabetes, øger mortalitetsrisikoen hos personer med iskæmisk hjertesygdom og forværrer symptomerne ved KOL. Der er endvidere enkelte holdepunkter for at fysisk inaktivitet, efter at man har fået stillet diagnosen tarmkræft og brystkræft, øger risikoen for at dø af kræft.
6. Konsekvensen af fysisk inaktivitet for funktion og funktionsevne

6.1 Introduktion

For hvert tiår siden 1940’erne er antallet af personer på 85 år og derover steget med 50 %. Det skyldes især medicinske fremskridt, og det betyder, at den forventede middellevetid, som i Danmark er ca. 78 år for kvinder og ca. 75 år for mænd, er stigende. Dette faktum kan medføre spekulationer om, hvorvidt der er føjet liv til årene, eller om der ’kun’ er føjet år til livet. Vil der komme flere ældre, der ikke er i stand til at klare sig selv og dermed belaster samfundsøkonomien? Det er af stor vigtighed, især for det enkelte menneske, men også for samfundet, at opnå så mange aktive år uden afhængighed som muligt. Der er selvfølgelig mange forskellige faktorer (Figur 6.1), der påvirker en aktiv alderdom, og der er mange forskellige grader af aktiv alderdom.
Figur 6.1.
Fysisk aktivitet og sammenhæng med kronisk sygdom

For at have mange aktive år kræves en god fysisk form og funktionsevne. Det diskuteres i disse år, hvor meget af selve aldringsprocessen og dermed ændring i fysisk form og/eller funktionsevne, der skyldes alderen i sig selv, og hvor meget der skyldes andre faktorer som eksempelvis arv, inaktivitet, sygdom, sociale faktorer osv.

Det er stadig et spørgsmål, hvorvidt sygdomme er en naturlig del af aldringsprocessen. Der er dog ingen tvivl om, at sygdom påvirker funktionen i retning af dårlere funktionsevne og nedsat maksimal kapacitet, og dermed øger sygdom risikoen for at blive afhængig af andre. Ældre, som lever med livsstilssygdomme, reagerer som andre befolkningsgrupper på, om de har en henholdsvis fysisk aktiv eller fysisk inaktiv livsstil (274). Konklusionerne i de øvrige kapitler i denne rapport omfatter derfor også ældregruppen. Dette kapitel har derfor fokus på funktionsevne og maksimal kapacitet.

I de senere år har man i flere studier forsøgt at bestemme, hvor stor en andel af en persons funktionsniveau, der kan tilskrives genetiske faktorer. Især tvillingestudier har været med til at påvise, i hvor høj grad genetiske faktorer kan forklare forskellige aspekter af fysisk funktion, som f.eks. daglig funktion (ADL) eller muskelfunktion (275). Hos ældre er eksempelvis gribestyrken et godt mål for den generelle muskelstyrke. Det er således vist, at mellem 22 og 65 % af gribestyrken i hånden hos ældre kan forklares ud fra arvelighed (276-278). Muskelfunktion i benene har været målt som ”rejse-sætte-sig”-test, ganghastighed og balance, som kan forklares med henholdsvis 46 %, 42 % og 0 % arvelighed (279). Et stort dansk studie, af 480 tvillingepar på 75 år og derover, har vist, at selvrapporteret funktionsevne (ADL) kan forklare mellem en tredjedel og halvdelen af variationen i ADL hos kvinder, mens en noget mindre procentdel kan forklare variationen hos mænd (280). Resultater fra studiet viste også, at det i højere grad var funktionsevneniveau frem for forandring i funktionsevne over tid, der var genetisk bestemt. Endelig synes der at være en moderat sammenhæng mellem arvelighed og deltagelse i fysisk aktivitet, hvor 45-62 % kan forklares ud fra gener (281-283). Det er dog vigtigt at understrege, at de forskellige studier har vist relativt store forskelle.

6.2 Udvalgte epidemiologiske studier

Det er af stor interesse at kende til ældrebefolkningens funktionsevne og fysiske aktivitetsniveau. Det er vist i et stort dansk tværsnitsstudie, at med stigende alder er
færre i stand til at udføre dagligdags aktiviteter, som f.eks. at løfte en tung genstand, bevæge sig omkring etc. Dette gælder både kvinder og mænd (5). I adskillige studier er det endvidere vist, at dette fald i funktionsevne over tid er relateret til både biologiske, psikologiske og sociale faktorer (284). Fysisk aktivitet er sandsynligvis den væsentligste faktor i forhold til helbred og livskvalitet senere i livet (285). Adskillige studier, med opfølgningsundersøgelser foretaget mellem 3 og 14 år senere, har vist, at inaktive/stillesiddende ældre har større risiko for at tabe funktionsevne sammenlignet med aktive ældre (286-289). Spørgsmålet er, hvor stor en rolle det spiller, om personen har været fysisk aktiv hele livet eller er blevet aktiv som ældre – med andre ord er det inaktivitet over tid eller inaktivitet på et givent tidspunkt, der har størst indflydelse på fald i funktionsevne?

Den sammenlagte fysiske aktivitet blev vurderet ved at addere aktivitetsscore ved 50-60 år, 60-70 år og 50-60-70 år og gennemsnitnet blev beregnet herudfra (292). Der blev i analyserne justeret for livsstil i form af rygning, køn, skoleuddannelse, civilstand, udvalgte kroniske sygdomme samt funktionsevne ved evalueringen i 1984 (20 års opfølgning). Blandt de 387 deltagere var der lidt flere kvinder (54 %) end mænd. Analyserne viste, at fysisk inaktivitet ved 50-års-alderen ikke var relateret til funktionsnedsættelse 25 år senere ved 75 år. Fysisk inaktivitet i 60-års-alderen var relateret til funktionsnedsættelse ved 75 år, dog kun hos personer med længere skoleuddannelse – denne sammenhæng ophørte når data blev justeret for køn, rygning og civilstand. Ved 70-års-alderen var der stærk sammenhæng mellem fysisk inaktivitet

76
og nedsat funktion 5 år senere ved 75 år (odds ratio = 4,87), og sammenhængen ved-
blev at være signifikant trods justering for diverse variable. De samme analyser blev
foretaget med 303 personer, som ikke havde kroniske sygdomme ved 1. evaluering i
1964. Her blev sammenhængen endnu mere tydelig, idet fysisk inaktivitet ved 70 år
viste en odds ratio = 5,07 på nedsat funktion fem år senere ved 75 år. Den kumulative
fysiske inaktivitet viste, at inaktive personer med kort skoleuddannelse (<7 år) havde
øget odds ratio i forhold til nedsat funktion ved 75 år, sammenlignet med aktive per-
soner. Denne forskel udlignedes dog ved justering for bl.a. funktionsniveau ved 70 år.
På trods af den komplekse sammenhæng mellem fysisk aktivitet, træning, kondition,
helbred og aldring konkluderer studiet, at fysisk aktivitet har meget stor indflydelse
på funktionsevne og bør vedligeholdes hele livet.

Camacho og medarbejdere (293) analyserede sammenhængen mellem fysisk funk-
tion og kombinationen af forskellige adfærds- og psykosociale faktorer blandt 91
personer, der alle var over 80 år ved opfølgning. Data blev indsamlet over en 20-årig
periode. De fandt, at fysisk aktivitet sammen med fravær af depression var associe-
ret med bedre funktion, ligesom race, uddannelse og civilstand. Derudover viste re-
sultaterne, at kombinationen af moderat alkoholforbrug, normal kropsvægt og fysisk
aktivitet var associeret til bedre funktion.

I et finsk studie undersøgte man ligeledes sammenhængen mellem livslang regel-
mæssig fysisk aktivitet og uddannelsesniveau med muskelfunktion hos midaldrende
kvinder (294). Artiklen påpeger, at fysisk aktivitet i fritiden var mere almindelig blandt
personer med længere uddannelse og arbejde med høj status, og derfor bør der ju-
steres for disse faktorer. Undersøgelsen inkluderede 112 kvinder mellem 50 og 60 år,
som blev inddelt i fire grupper i forhold til fysisk aktivitet og uddannelsesbaggrund:
Henholdvis universitetsgrad og aktiv, universitetsgrad og stillesiddende, og faglært/
ufaglært og aktiv, faglært/ufaglært og stillesiddende. Resultaterne viste tydeligt, at de
fysisk aktive kvinder havde bedre muskelfunktion end de stillesiddende kvinder; og at
højere uddannelse korrelerede til bedre muskelfunktion. De dårligst uddannede, stil-
lesiddende kvinder havde lavest muskelfunktion i alle test.
I Alameda County studiet (295) blev en fjerdedel af i alt 574 personer mellem 65 og 102 år karakteriseret som skrøbelige. Skrøbelighed var i dette studie defineret som problemer eller besvær på to eller flere af følgende domæner: Det fysiske, det ernæringsmæssige, det kognitive og det sensoriske. De skrøbelige ældre rapporterede reduceret aktivitet, dårligere mental sundhed og mindre tilfredshed med livet. Andre risikofaktorer, som f.eks. alkoholvænker, rygning, depression, selvvurderet helbred og fysisk inaktivitet blev analyseret ud fra 30 års opfølgning. Konklusionen på undersøgelsen var, at det er muligt at udskyde tidspunktet for skrøbelighed ved at påvirke alle disse risikofaktorer, f.eks. fysisk inaktivitet.

6.3 Fysisk inaktivitet og funktion hos ældre mennesker

I Danmark har 60-årige i gennemsnit en restlevetid på 18,8 år og 22 år for henholdsvis mænd og kvinder. Indtil de 74 år vil den gennemsnitlige mand og kvinde ikke have funktionsproblemer, men i de sidste år af deres liv vil de have sværere ved at klare hverdagen som tidligere. For den gennemsnitlige mand drejer det sig om godt fire år og for den gennemsnitlige kvinde om godt syv år (296). Det ses i talrige studier, at den fysiske kapacitet mindskes med alderen. Forskningsresultater indikerer, at en fysisk inaktiv livsstil kan være en primær årsag til skrøbelighed hos ældre, specielt i fjerderne og halvfemserne (297;298). Reduceret muskelmasse (svarende til at muskelmassen/højden^2 er 2 standardafvigelser lavere end referenceværdier for raske unge mænd og kvinder), formodes at forekomme hos over 50 % af ældre over 80 år og mellem 13-24 % af ældre 65-70-årige (299;300). Denne aldersrelaterede muskelatrofi og dermed nedsatte muskelstyrke medfører en øget risiko for balanceproblemer, fald, funktionsevnetab og nedsat livskvalitet (301;302). Selv om reduktionen af muskelmasse og dermed muskelstyrke kan tilskrives adskillige faktorer, er fysisk inaktivitet formentlig den vigtigste faktor (303), (Figur 6.2).
Figur 6.2
Gennemsnitspræstationer i forskellige funktionstest hos fysisk aktive og fysisk inaktive ældre mennesker i 5-års aldersgrupper.

Det ses, at fysisk inaktive mennesker i gennemsnit har dårligere resultater end fysisk aktive. Desuden viser figuren, at den relative forskel stiger med stigende alder, specielt når det gælder underekstremitetsfunktionen.

a: Antallet af stolerejsninger (dvs. at rejse sig op og sætte sig på en stol) udført på 30 sekunder.
b: Antallet af gange en håndvægt kan løftes op til skulderen på 30 sekunder.
c: Distancen, der kan tilbagelegges ved 6 minutters gang.
d: Antallet gange knæene kan løftes op til en højde svarende til midt på låret i løbet af 2 minutter.

Fysisk inaktiv er defineret som fysisk aktivitet, svarende til 30 minutters rask gåtur, mindre end 3 gange ugentlig.

Kilde: Rikli RE et al, 2004 (304).
Data fra en tværnsitsundersøgelse af mere end 7.000 amerikanere over 60 år har vist, at styrke, udholdenhed og adræthed/balance, målt ved fysiske funktionstest, reduceres med omkring 1 % til 1,5 % om året eller 10 % til 15 % pr. årti i perioden fra 60 til 95 år (305). Deltagerne i undersøgelsen var generelt raske og selvhjulpne hjemmeboende, hvor de fleste var veluddannede, og hvor ca. halvdelen rapporterede, at de var moderat fysisk aktive mindst tre gange om ugen i mindst 30 minutter. Som vist i figur 6.2 er samtlige testresultater dårligere hos de fysisk inaktive ældre, og næsten alle forskelle var signifikante (306). Den relative forskel mellem testværdierne for de fysisk inaktive og fysisk aktive personer øgedes med stigende alder. Således var den gennemsnitlige hastighed i kapacitetsreduktionen mellem 60 og 95 år større for de fysisk inaktive end for de fysisk aktive deltagere (44 % mod 31 %). Disse tværnsitsdata kunne derfor tyde på, at ca. 50 % af kapacitetsreduktionen hos de fysisk inaktive kunne have været undgået, hvis de havde været fysisk aktive.

Præstationer i simple funktionstest har vist sig at være prædiktivt for efterfølgende funktionsevnetab. Således er stort tidsforbrug til at rejse sig op og sætte sig på en stol 5 gange og lav ganghastighed forbundet med en forøget risiko for funktionsevnetab (307). At fysisk inaktivitet har betydning for funktionsevnen er vist i flere studier, bl.a. i en undersøgelse af 3.075 velfungerende 70-79-årige, hvor de fysisk inaktive var længere tid om at gå 400 meter og havde lavere knæstrækkestyrke end dem, der opfyldte anbefalingerne om fysisk aktivitet, også efter justering for forstyrrende faktorer (308). Samtidig dokumenterede undersøgelsen, at der var en dose-respons relation, idet muskelstyrke og ganghastighed var større hos ældre, der trænede ved højere intensitet i forhold til de, der alene var fysisk aktive ved dagligdags aktiviteter.

Et finsk studie, omfattende ca. 1.100 selvhjulpne hjemmeboende 65-84-årige, viste, at nedsat mobilitet var prædikativt for afhængighed og død 8 år senere (309). I det samme studie blev det vist, at en kombination af nedsat mobilitet og fysisk inaktivitet var associeret med en betydelig forhøjede risiko for afhængighed og død efter justering for alder, civilstand, uddannelse, kroniske lidelser, rygning og tidligere fysisk aktivitet (figur 6.3). Studiet pointerer, at den beskyttende effekt af fysisk aktivitet i forhold til en uafhængig tilværelse er størst hos de ældre, der i forvejen har mobilitetsproblemer. På trods af, at det er væsentligt at være fysisk aktiv for mennesker med kroniske lidelser, har mange et lavt aktivitetsniveau, hvilket bl.a. er vist hos mennesker med artrose (310).
Figur 6.3
Den relative risiko for tab af uafhængighed i løbet af en 8 års periode hos ældre mennesker afhængig af tilstedeværelse af mobilitsproblemer og fysisk aktivitet.

Data er justeret for alder, civilstand, uddannelse, kroniske sygdomme, rygning og tidligere fysisk aktivitet. Den relative risiko for tab af uafhængighed var betydeligt forøget hos dem, der ved baseline havde mobilitsproblemer og samtidig var fysisk inaktive.

6.4 Kortvarig reduktion i fysisk aktivitet

Ældre er i langt højere grad udsat for kronisk sygdom, indlæggelser og kirurgiske indgreb end unge. Samtidig tyder nye data på, at tab af muskelmasse som følge af sengeleje er mere udtalt hos ældre (jf. s. 39), som i forvejen har en aldersbetinget reduktion af muskelmassen. Hvilken betydning perioder med nedsat fysisk aktivitet som følge af sygdom eller skader har hos ældre, blev undersøgt blandt 680 tilfældigt udvalgte hjemmeboende +70-årige (312). Funktionsevne ved baseline blev registreret ved selvrapportering (ADL disability score), og deltagerne blev efter testning inddelt i 3 grupper med henholdsvis lav, middel og høj risiko for tab af funktionsevne.

Forskningsresultater tyder således på, at fysisk aktivitet kan bruges med henblik på at opspare reservekapacitet til eventuelle perioder med fysisk inaktivitet som følge af sygdom og skader. Denne hypotese understøttes til en vis grad af studier, der har vist, at det selvrapporterede basale funktionsniveau før en hospitalsindlæggelse er prædiktivt for funktionsniveau, plejehjemsanbringelse og overlevelse efter udskrivelse hos ældre medicinske patienter (313,314). Disse studier bygger alene på selv-rapporteret funktion, som dog er vist at være relateret til objektivt målt funktion hos hjemmeboende ældre mennesker (315,316).
Der foreligger kun sparsom dokumentation for, hvilken betydning fysisk inaktivitet har for reversibiliteten af funktionsøvnetab. Et projekt omfattende 754 tilfældigt udvalgte +70-årige uden funktionsproblemer i basal ADL, dvs. badning, påklædning, forflytning og gang, søgte at identificere prognostiske faktorer associeret med rekonvalescens efter funktionsøvnetab. 420 personer oplevede tab af funktionsevne, og det viste sig, at fysisk inaktivitet var en af de væsentlige faktorer forbundet med en længere periode før restitution og efterfølgende kortere periode før en ny periode med tab af funktionsevne (317).

6.5 Betydning af fysisk inaktivitet for reservekapacitet

Det er vist i flere studier, at lav maksimal muskelstyrke kan prædiktere mortalitet og nedsat funktion. Således har man i en befolkningsundersøgelse (The Honolulu Heart Program) med 8006 deltagere, undersøgt sammenhængen mellem ændring i håndmuskelstyrke og alder, kropsvægt og sygelighed (322). Forsøgspersonerne var ved starten af studiet i 1965 mellem 45 til 68 år, og man fulgte dem i en periode på 27 år. Ved opfølgningen i 1992 deltog 3.741 mænd mellem 71 og 96 år. Resultaterne fra studiet viste, at de ældre mænd, der var døde på opfølgningstidspunktet, havde signifikant lavere håndgribestyrke i 1965 end de, der overlevde. Faldet i muskelstyrke var i gennemsnit 1 % pr. år hos de overlevende, dog 1,5 % for de deltagere, der i 1965 havde høj alder, vægttab og kroniske sygdomme. De, der havde lav muskelstyrke i 1992, var også de, der havde et fald på 1,5 % pr. år i muskelstyrke, og de, der havde
lav muskelstyrke i 1965, havde det også i 1992. I studiet konkluderes det, at de, der
var i den laveste tredjedel i muskelstyrke, havde otte gange højere risiko for nedsat
håndmuskelstyrke end de ældre, der lå i den øverste tredjedel af muskelstyrken, hvil-
ket tilskrives den lave muskelstyrke og dermed lille reservekapacitet gennem livet.
I et lignende studie på Hawaii blev data første gang indsamlet i perioden 1965-1970
på 6.040 raske mænd mellem 45 og 68 år (323). Opfølgningsstudiet blev foretaget 30
år senere. I studiet måtte man bl.a. håndgribestykke og BMI, og at mortalitet blev
registreret i 30-års-perioden. Det konkluderes i studiet, at risiko for død gennem hele
opfølgningsperioden var tæt forbundet med håndgribestykke ved starten af under-
søgelsen (mellem 1965-1970), men uafhængig af BMI. En øgning af muskelstyrke
blandt midaldrende kan have betydning for mortalitet mange år fremefter. Så højere
muskelstyrke kan fortolke højere funktionel reservekapacitet, som synes at beskytte
mod mortalitet.

I Evergreen-studiet, som startede i 1989-1990, undersøges, hvorvidt isometrisk
muskelstyrke målt i knæets ekstensorer før knoglebrud kunne prædiktere mortalitet
efter bruddet (324). I dette studie fik 493 kvinder og mænd, som alle var mellem 75
og 80 år ved studiestart, testet muskelstyrke, og en undergruppe på 82 personer
herfra deltog i analysen. De havde i en opfølgningsperiode på 5 år alle haft mindst et
knoglebrud. Mortalitet blev registreret via offentlige registre over en 10-års periode
fra studiets start. Der gik gennemsnitligt 878 dage fra studiets start, til en person
fik knoglebrud, og 32 personer døde som følge af knoglebrud. De resterende af
deltagerne blev inddelt i tre kategorier (lav – middel – høj) baseret på muskelstyrke
i knæekstensorerne og med hensyntagen til køn. Mortalitetsrate pr. 1.000 person-
måneder var 15,2 i den laveste kategori, 4,9 i middel kategorien og 1,7 i den højeste
categori. Efter justering for tid fra baseline til fraktur, lokalisation af fraktur, alder, køn,
kropsvægt, kropshøjde og antal kroniske lidelser, var den relative risiko for død mere
end 4 gange så høj i den svageste gruppe i forhold til den stærkeste gruppe (relativ
risiko: 4,40, 95 % CI 1,40-13,83) og mere end 2 gange så høj i den midterste gruppe
(relativ risiko 1,39, 95 % CI 0,68-8,40). Derfor kan det konstateres, at lav muskelstyrke,
målt før et knoglebrud, er en prædiktor for øget mortalitet efter knoglebrud.
Mortalitetsraten (dødsfald/1.000 personmåned) efter knoglebrud opgjort i grupper (tertiler) baseret på "knæekstensionsstyrke" målt før knoglebrud. Data omfatter 82 personer, der inden for 5 år efter muskelstyrkmålingerne havde pådraget sig mindst en fraktur, og hvor 32 var døde inden for 10 år (observationsperioden for knoglebrud var 5 år og for mortalitet 10 år). Studiet omfattede 493 ældre 75-80 årige personer og var et delstudie i det finske Evergreen-populationsstudie. Kilde: Modificeret fra: Rantanen T et al., 2002 (324).

6.6 Sammenfatning

Der er evidens for at fysisk inaktivitet er relateret til en forøget risiko for tab af funktionsevne og mortalitet. Den negative konsekvens af en fysisk inaktiv livsstil synes at være større hos ældre, der har mobilitetsproblemer, end hos raske ældre. Endvidere er der evidens for, at selv kortere perioder med fysisk inaktivitet i relation til sygdom og hospitalsindlæggelse øger risikoen for tab af funktionsevne, og at perioden før fuld restitution er længere hos fysisk inaktive ældre.

Figur 6.4.
Muskelstyrke i knæekstensorer

![Muskelstyrke i knæekstensorer](image-url)
7. Sociologiske aspekter i forbindelse med fysisk inaktivitet

7.1 Introduktion

I de foregående kapitler har omdrejnings punktet været studier, der omhandler menneskets fysiologi og den medicinske/naturvidenskabelige viden om fysisk inaktivitet. I dette kapitel drejes synsvinklen over til det sociale og samfundsskabte menneske (og grupper af mennesker) og den sociologiske viden om inaktivitets problematikken. De foregående kapitler har dokumenteret de sundhedsmæssige risici ved fysisk inaktivitet. Den sociologiske viden er efterfølgende helt nødvendig, hvis man skal forstå, hvorfor folk ikke bare ændrer deres vaner, og hvad der skal til, for at man kan skabe varige forandringer.

Da årsagerne til fysisk inaktivitet er såvel biologiske som menneske- og samfundsskabte, giver det mening at forsøge at give en form for status på den sociologiske viden om fysisk inaktivitet med udgangspunkt i to perspektiver:

1. En kortlægning af problematikkens omfang: Hvor udbredt er fysisk inaktivitet i den danske befolkning? Og hvordan kan vi identificere, hvilke befolkningsgrupper, der er fysisk inactive?
2. Et fokus på hvordan problematikken kan forklares: Hvilke forklaringer gives der på fysisk inaktivitet i den danske befolkning?

Der refereres primært til udvalgte studier, såfremt de i deres videnskabelige udgangspunkt er sociologiske eller arbejder med sociologiske variable, fortæller noget om fysisk inaktivitet i en dansk kontekst samt angiver barrierer og motiver i relation til fysisk inaktivitet. Selve ordet eller begrebet fysisk inaktivitet er en nyere betegnelse, der betegner et samfundsfænomen og en sundhedsdiskurs, der i Danmark forskes i på tværs af fagdiscipliner. Afgørelsen om, hvorvidt undersøgelser er sociologiske eller ej, er ofte vanskelig, idet den er afhængig af, hvorvidt bibliotekarerne har valgt at benytte ordet ”fysisk inaktivitet” som emneord i kategorisering af sociologiske
undersøgelser/forskning. Derfor er der kun blevet identificeret få danske studier, når der sages på “fysisk inaktivitet”, hvorved det har været nødvendigt at benytte alternative søgeord, som kan relateres til emnet: Eksempelvis fysisk aktivitet, idræts- og motionsvaner mv.. På trods af denne bredere tilgang findes der overraskende få danske studier, der kan betegnes som sociologiske i deres udgangspunkt. Mens der findes flere (især epidemiologiske) studier, der inddrager de såkaldte klassiske sociale variable – som f.eks. køn, alder, uddannelse, erhverv, civilstatus m.fl. Disse variable er især blevet operationaliseret i den sociologiske levevilkår- og velfærdsforskning i Danmark siden 1960’erne som forklaringer på sociale forskelle (særligt i Socialforskningsinstituttets regi), og har desuden fundet anvendelse i sundhedsforskningen.

7.2 Kortlægning af fysisk inaktivitet

"Hvis vi ser på det sidste år, hvad ville De så sige passer bedst som beskrivelse på Deres aktivitet i fritiden? Svarkategorierne:

1. Træner hårdt og dyrker konkurrenceidræt regelmæssigt og flere gange om ugen (konkurrenceidræt).
2. Dyrker motionsidræt eller tungt havearbejde mindst fire timer pr. uge (motionsidræt).
4. Læser, ser fjernsyn eller har anden stillesiddende beskæftigelse (stillesiddende)".

Spørgsmålsformuleringerne vedrørende fysisk aktivitet/belastning i hovedbeskæftigelsen var:

"Hvordan vil De beskrive den fysiske belastning i Deres hovedbeskæftigelse? Svarkategorierne:

1. Hovedsageligt stillesiddende arbejde, som ikke kræver legemlig belastning.
2. Arbejde, som i stor udstrækning udføres stående eller gående, men ellers ikke kræver legemlig anstrengelse.
4. Tungt eller hurtigt arbejde, som er anstrengende".

Spørgsmålet om fysisk aktivitet i fritiden har Statens Institut for Folkesundhed anvendt til at måle, hvorvidt den voksne danske befolkning efterlever Sundhedsstyrelsens tidligere anbefaling om fysisk aktivitet, at voksne bør være fysisk aktive i fritiden mindst 4 timer om ugen. Man har forsøgt at udvikle et nyt spørgsmål, der kan monitorere Sundhedsstyrelsens nye officielle anbefaling fra 1999, at voksne bør være fysisk aktive mindst 30 minutter af moderat intensitet, helst alle ugens dage. Det har dog vist sig at være problematisk at udvikle et spørgsmål, der kan måle den nye anbefaling (326).
Ifølge det "gamle" spørgsmål efterlever ca. 85 % af den voksne danske befolkning i 2003 Sundhedsstyrelsens tidligere anbefaling. Ifølge omtalte metodestudie, der netop undersøger, om et nyudviklet spørgsmål kan måle, hvorvidt den voksne danske befolkning efterlever anbefalingen om 30 minutters fysisk aktivitet om dagen, er det i værste fald kun ca. 25 % og i bedste fald højst ca. 50 %, der efterlever anbefalingen (i 2003). Det nyudviklede spørgsmål var formuleret således:

"Hvor mange minutter var De fysisk aktiv i fritiden og på arbejdet hver af dagene i sidste uge? Medregn kun fysisk aktivitet, hvor De var lidt eller meget forpustet. Start med dagen i går og tag en dag ad gangen".

Eksempler på hvad den fysiske aktivitet kan være er angivet (cykling til og fra arbejde, rask gang, sport, fysisk anstrengende arbejde eller havearbejde). I tre forskellige spørgeskemaer har man formuleret spørgsmålet på lidt forskellige måder. Det er i denne sammenhæng vigtigt at fremhæve, at det i omtalte metodestudie blev konkluderet, at det nyudviklede spørgsmål ikke kan anvendes til at monitorere 30-minutters anbefalingen.

I SUSY 2005 har man medtaget følgende spørgsmål med henblik på at monitorere 30-minutters anbefalingen:

"Hvor mange dage om ugen er De sædvanligvis fysisk aktiv mindst 30 minutter om dagen? Der skal medregnes moderat eller hårdere fysisk aktivitet, hvor De øger vejrtræknin; f.eks. motions- eller konkurrenceidræt, tungt havearbejde, rask gang, cykling i moderat eller hurtigt tempo eller fysisk anstrengende arbejde. Medregn både arbejde og fritid. (Den interviewede person skal svare ud fra situationen her og nu)".

Der er endnu ikke udgivet statistiske analyser af ovenstående resultater eller af et lignende metodestudie, således at det kan konkluderes, hvorvidt spørgsmålet er brugbart til monitorering af 30-minutters anbefalingen eller ej. Idet anbefalingen lyder på "helst alle ugens dage", er det strengt taget kun ca. 36 %, der efterlever anbefalingen, men som det gøres i det omtalte metodestudie, kan man sige, at det "i bedste fald" er ca. 55 % svarende til mindst fem dage (328). Det vil sige, at det tilsyneladende stadig er en markant mindre andel, der ifølge dette spørgsmål efterlever Sundheds-
styrelsens nuværende anbefaling, sammenlignet med de ca. 85 %, der efterlever den tidligere 4-timers anbefaling ifølge det ”gamle” spørgsmål.

SUSY undersøgelserne viser, at der er en sammenhæng mellem uddannelseslængde og fysisk aktivitet i fritiden (327). Der er færrest med et højt fysiske aktivitetsniveau blandt personer med mindre end ti års uddannelse (12%), mens den største andel med et højt fysiske aktivitetsniveau findes blandt personer med en uddannelse på 15 år eller længere (30%). Ydermere er andelen af fysisk inaktive størst blandt overvægtige, indvandrere, arbejdsløse, fattige, ældre og borgere med lavere uddannelse. De mindst fysisk aktive i fritiden er gruppen blandt separerede (14 %) og folk med enkestand (7 %). Der er ligeledes en sammenhæng mellem indkomst og deltagelse i motion: jo højere indkomst, jo højere deltagelse i motionsaktiviteter. Denne sammenhæng er endnu mere udtalt for de aktive i foreningerne (327).

Med hensyn til kønsforskelle så viser data fra SUSY-undersøgelserne, at mænd generelt er mere fysisk aktive end kvinder, og at dette gælder i alle aldersgrupper. Andelen af motionsdyrkende kvinder såvel som mænd falder med alderen, i alle aldersgrupper er mænd dog mere fysisk aktive end kvinder. Kønsforskellen er således markant, og det konkluderes, at kun 40 % af kvinderne og 54 % af mændene er fysisk aktive, svarende til Sundhedsstyrelsens anbefalinger for voksne. Det fremgår desuden, at kønsforskellene i sundhedsadfærd grundlægges tidligt, idet der allerede spores en kvantitativ forskel i motionsadfærden blandt drenge og piger i 15-16-årsalderen (327).
Tabel 7.1
Andel med stillesiddende fritidsaktivitet fordelt på forskellige grupper

Kombineret skole- og erhvervsuddannelse

<table>
<thead>
<tr>
<th>Ålder</th>
<th>Andel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 10 år</td>
<td>23,4 %</td>
</tr>
<tr>
<td>10 år</td>
<td>16,6 %</td>
</tr>
<tr>
<td>11-12 år</td>
<td>14,3 %</td>
</tr>
<tr>
<td>13-14 år</td>
<td>10,5 %</td>
</tr>
<tr>
<td>Over 15 år</td>
<td>7,5 %</td>
</tr>
</tbody>
</table>

Socioøkonomisk gruppe

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Andel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selvstændig med ansatte</td>
<td>12,8 %</td>
</tr>
<tr>
<td>Selvstændig uden ansatte</td>
<td>15,5 %</td>
</tr>
<tr>
<td>Topleder</td>
<td>8,0 %</td>
</tr>
<tr>
<td>Lønmodtager højeste niveau</td>
<td>6,5 %</td>
</tr>
<tr>
<td>Lønmodtager mellemniveau</td>
<td>8,8 %</td>
</tr>
<tr>
<td>Lønmodtager grundniveau</td>
<td>9,7 %</td>
</tr>
<tr>
<td>Anden lønmodtager</td>
<td>14,7 %</td>
</tr>
<tr>
<td>Arbejdsløs</td>
<td>15,3 %</td>
</tr>
<tr>
<td>Uddannelsessøgende</td>
<td>9,7 %</td>
</tr>
<tr>
<td>Førtidspensionist</td>
<td>29,2 %</td>
</tr>
<tr>
<td>Efterlønsmodtager</td>
<td>5,5 %</td>
</tr>
<tr>
<td>Alderspensionist</td>
<td>20,9 %</td>
</tr>
<tr>
<td>Andre</td>
<td>18,2 %</td>
</tr>
</tbody>
</table>

Samlivssstatus

<table>
<thead>
<tr>
<th>Status</th>
<th>Andel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gift</td>
<td>10,4 %</td>
</tr>
<tr>
<td>Småfamiliemedlem</td>
<td>12,1 %</td>
</tr>
<tr>
<td>Enlig (separeret, skilt)</td>
<td>18,7 %</td>
</tr>
<tr>
<td>Enlig (enkestand)</td>
<td>27,2 %</td>
</tr>
<tr>
<td>Enlig (ungdom)</td>
<td>13,5 %</td>
</tr>
</tbody>
</table>

Køn og alder

<table>
<thead>
<tr>
<th>Køn</th>
<th>Andel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mænd 16-24 år</td>
<td>11,7 %</td>
</tr>
<tr>
<td>Mænd 25-44 år</td>
<td>12,8 %</td>
</tr>
<tr>
<td>Mænd 45-66 år</td>
<td>11,4 %</td>
</tr>
<tr>
<td>Mænd 67-79 år</td>
<td>13,8 %</td>
</tr>
<tr>
<td>Mænd over 80 år</td>
<td>33,9 %</td>
</tr>
<tr>
<td>Mænd i alt</td>
<td>13,0 %</td>
</tr>
<tr>
<td>Kvinder 16-24 år</td>
<td>10,0 %</td>
</tr>
<tr>
<td>Kvinder 25-44 år</td>
<td>9,6 %</td>
</tr>
<tr>
<td>Kvinder 45-66 år</td>
<td>9,9 %</td>
</tr>
<tr>
<td>Kvinder 67-79 år</td>
<td>16,2 %</td>
</tr>
<tr>
<td>Kvinder over 80 år</td>
<td>44,8 %</td>
</tr>
<tr>
<td>Kvinder i alt</td>
<td>12,8 %</td>
</tr>
</tbody>
</table>

Stillesiddende fritidsaktivitet: Læser, ser fjernsyn eller har anden stillesiddende beskæftigelse.

7.3 Kortlægning af idræt, motion og hverdagsmotion

Idræts- og motionsdeltagelsen er blevet et udbredt livslangt fænomen, og således dyrker f.eks. mere end hver tredje person (44 %) over 70 år regelmæssig idræt/motion. Selv om mænd og kvinder procentvis deltager ligevid i idræt og motion, har de et meget forskelligt deltagelsesmønster, som både kommer til udtryk i valg af idrætsaktiviteter og organisationsformer samt i tidsforbrug (330) og intensitet (5). Det samme gælder inden for aldersgrupperne, hvor også betydelige forskelle gør sig gældende (329).

Af yderligere karakteristiske træk i udviklingen bør nævnes, at danskeres idræts- og motionsdeltagelse er præget af en tiltagende mangfoldighed i aktiviteter, hvor især jogging, løb, styrketræning og motionscykling er brudt igennem som folkeidrætter/motionsaktiviteter. Idræts- og motionsdeltagelsen foregår desuden ikke længere
kun i foreningsregi, men i dag i høj grad også i kommercielle fitnesscentre og som selvorganiserede aktiviteter, jævnfør ovennævnte aktiviteter. Foreningsdeltagelsen er omkring tredoblet i perioden (35 % er medlem af en idrætsforening), mens idræt/motion i andre former for organisering er mere end femdoblet. 21 % dyrker udelukkende idræt/motion som medlem af en idrætsforening, 21 % dyrker udelukkende idræt/motion uden for foreningsregi og 19 % dyrker både idræt/motion i og uden for en forening (329). Ved selvafrapportering angives det i 1998-undersøgelsen, at befolkningen i gennemsnit dyrkede idræt/motion/hverdagsmotion i 4,29 timer ugentligt (331). Bag dette gennemsnit gemmer der sig store forskelle i befolkningen, idet 28 % var aktive mindst 4 timer om ugen, 41 % var aktive mindre end 4 timer og 31 % var helt fysisk inaktive. Der er også tale om betydelige forskelle kænnerne imellem og mellem de forskellige aldersgrupper. I 1998-undersøgelsen brugte mænd 5,04 timer om ugen, mens kvinder kun brugte 3,52 timer, og de unge mellem 16-19 år toppede med 7,35 timer, mens gruppen på +70 år brugte 3,26 timer om ugen (331).

Operationaliseringen af ”idrætsbegrebet” er ændret undervejs i perioden, idet man i den første undersøgelse kun spurgte ind til sport og i de senere også spørger til motion. Også registreringen af hyppighed har ændret sig, idet man i de første undersøgelser spurgte om ”…i det sidste år regelmæssigt har dyrket sport/motion”, mens man i de nyere også spørger om, hvor ofte, angivet i antal timer om ugen.

Socialforskningsinstituttets undersøgelser viser, at vi i Danmark har en meget idræts- og motionsaktiv befolkning, for hvem idræts- og motionsaktiviteter udgjer en vigtig del af hverdagen og livsforløbet.
7.4 Hvordan kan vi forklare fysisk inaktivitet?

Det er veldokumenteret, at der er social ulighed i sundhed. En ulighed der hænger sammen med uddannelse og indtægt og som viser sig geografisk, idet visse dele af landet, såvel som visse bydele, er stærkere præget af befolkningsgrupper med sundhedsmæssige problemer. Desværre viser den sociale ulighed sig også, når det gælder fysisk inaktivitet i befolkningen. For selv om det fysiske aktivitetsniveau overordnet set er steget i de sidste årtier, så er variationen mellem de forskellige socialklasser, som fremhævet i ovenstående data, temmelig store (5). Det viser sig ligeledes, at det er de allerede fysisk active, der bliver mere active og de fysisk inaktive, der er blevet mere inaktive. Dette vidner om en stigende social ulighed inden for fysisk aktivitet (325). Den sociale ulighed i sundhed gør sig også gældende for etniske minoriteter generelt og specielt også i forhold til fysisk inaktivitet (332;333).

Et godt eksempel på, hvordan det ved en målrettet indsats på de mere strukturelle betingelser er muligt at forandre folks vaner, fremhæves i DSI-rapporten med en henvisning til ændringer af cykelvanerne i Odense. Her er det lykkedes at iværksætte en bred vifte af projekter, lige fra omfattende fysiske forbedringer, til regelændringer og kampagnemæssige tiltag. Resultaterne af disse projekter har været, at cykeltrafikken i projektperioden steg med hele 20 %, og at stigningen fortsatte i årene efter og det på trods af den generelle udvikling med færre og færre cyklister (335).

Det konkluderes i DSI-rapporten, at der med kravet om RCT-studier ikke på nuværende tidspunkt findes videnskabeligt dokumenterede retningslinier for forebygelse af fysisk inaktivitet, og som følge heraf er det ikke muligt at konkludere, hvilke indsatsstyper der kan forøge fysisk aktivitet (335).

Ligeledes påpeges vanskelighederne ved at overføre disse resultater til en dansk kontekst. DSI fremhæver, at forebyggelsesindsatser har mange facetter og derfor er vanskelige at måle i enkelte fysisk/kliniske effektmål, da insatserne optræder i et komplekst samspil mellem mennesker og samfund, men at dette ikke bør være en "undskyldning" for ikke at foretage evalueringer af høj kvalitet. Oversigtartiklerne vurderes til ikke at være brugbare til en identificering af, hvilke typer af intervensjoner der vil have effekt i en dansk kommunal sammenhæng, og det påpeges, at der er mangel på studier, hvor langtids effekten af interventionerne undersøges. Derfor bør der udvikles ensartede effektmål for studier på forebyggelsesområdet, som både indeholder "hårde" kliniske mål og "bløde" psykosociale mål, som f.eks. det sociale netværk (335).

7.5 Barrierer og motiver i forhold til fysisk inaktivitet

Et eksempel på et nyere dansk sociologisk studie (N=522) er en "inaktivitetsundersøgelse", omhandler voksnes barrierer og motiver i relation til fysisk inaktivitet. I denne undersøgelse kobles såvel den individualiserede tilgang med den samfunds- mæssige tilgang og kvantitative selvrapporterende spørgeskemadatal og kvalitative data fra fokusgruppeinterview (339;340). Rekrutteringen foregik ved hjælp af Epinions database over danskere, der via besvarelser på to spørgsmål om fysisk aktivitet/inaktivitet.

1) "Hvis vi ser på det sidste halve år, hvad vil De så sige passer bedst som beskrivelse af Deres fysiske aktiviteter i fritiden?" 1) Ser tv, o.lign., 2) spadserer, cykler o.lign., 3) motionerer, 4) træner hårdt.

2) "Jeg vil nu bede Dem tænke på Deres eget daglige, fysiske aktivitetsniveau. Hvilk Ken af følgende sætninger passer på, hvor fysisk aktiv De er dagligt?“ 1) under 30 minutter, 2) omkring 30 minutter, 3) mere end 30 minutter” (339;340).

Andre undersøgelser har også peget på, at netop tilgængelighed og nærhed spiller en afgørende rolle for brugen af faciliteter og natur (343;344). En undersøgelse af befolkningens idræts- og motionsvaner i fire udvalgte geografiske lokaliteter viser, at det først og fremmest er stedets tilgængelighed, dvs. hvor tæt stedet eller anlægget er placeret i forhold til den idræts-/motionsaktives bopæl. Desuden er det afgørende, hvorvidt det er muligt at dyrke idræt/motion på forskellige tidspunkter af dagen. Det er især blandt kvinder, idræts/motionsaktive i urbaniserede områder, samt idræts/motions aktive der ikke dyrker idræt/motion i en forening, som tillægger det stor betydning, at stedet, hvor de dyrker motion, ligger tæt på deres bopæl, og at man kan dyrke motion på forskellige tidspunkter af dagen.

Det er slående, hvor meget nærheden til det sted, hvor de oftest dyrker idræt/motion, betyder for langt de fleste aktive, uanset hvor de bor i landet (343). Undersøgelsen dokumenter også, at godt en tredjedel af de idræts-/motionsaktive ligeledes tillægger det stor betydning, at stedet, hvor de dyrker idræt/motion, giver mulighed for at dyrke idræt/motion i naturen. Forskningen i grønne områder og sundhed dokumenterer, at
nærhed (mindre end 300 meter) til grønne områder spiller en afgørende rolle for, om folk bruger dem, og hvor meget de bruger dem (344;345). Vigtigt fremtræder også den relationelle side, idet mange angiver at kunne motiveres af netværk, der støtter og af nogen at følges og være fysisk aktive sammen med (339;340).

Det er veldokumenteret, at der er en sammenhæng mellem svage sociale relationer og sundhedsproblemer generelt (346), ligesom det viser sig, at der er en sammenhæng mellem stærke sociale relationer og mindre risiko for at blive syg og mindre risiko for at dø tidligt (334). Et af de kritiske punkter ved mange interventionsprojekter er den manglende fastholdelse/forankring (compliance) af de nye motionsvaner efter endt projektdeltagelse. En fortsættelse i grupper og etablerede netværk kunne sandsynligvis give en forankring af de nye vaner og således skabe en fastholdelse, men der mangler dokumentation og dermed viden herom.

7.6 Sammenfatning

Til sidst vil det være på sin plads at fremhæve, at der i de senere år – i Danmark - har været en stor mangfoldighed i forebyggelsesindsatserne for at bekæmpe fysisk inaktivitet. Der er i den forbindelse blevet iværksat adskillige undersøgelser, evalueringer og interventioner. Der forefindes utallige undersøgelses- og evaluerringsrapporter samt universitetsopgaver, der på forskellig vis har arbejdet med inaktivitetsproblematikken. Der eksisterer ligeledes adskillige udenlandske interventioner, som ikke er evaluert i metaanalyser. Hovedparten af disse, ikke evaluerede studier, lever i deres design ikke op til kriteriet om at være RCT basede studier, men de rummer vigtig viden, der indikerer, at mange barrierer kan fjernes eller minimeres med politiske indsatser og interventioner. Selvom det inden for sundhedsvidenskaben er ideal at have RCT-baserede studier, er problematet, at dette design ikke vil være sandsynligt og muligt, når vi har at gøre med sociologiske studier af menneskers adfærd og sociale sammenhænge. Der må gennemføres flere systematiske opsamlende evalueringer og arbejdes mere systematisk med pilotstudier, der kan indkredse, hvilke "bløde" mål vi kan fokusere fremtidige studier og interventioner på. Der må ligeledes også afsættes ressourcer til metodeudvikling af andre typer af undersøgelser, som f.eks. ko-horteundersøgelser, casestudier, kvalitative studier m.fl.. Først derefter kan vi svar på spørgsmålet om, hvordan vi får folk til at blive mere fysisk aktive og ikke mindst, hvordan vi kan fastholde dem i en hverdag med fysisk aktivitet.
8. Anvisninger

8.1 National handlingsplan for fysisk aktivitet

Handlingsplanen bør koordinere samtlige igangværende som kommende indsatser og initiativer vedrørende fysisk aktivitet i Danmark, samt opstille konkrete mål for befolkningens deltagelse i fysisk aktivitet. Endelig bør handlingsplanen indeholde konkrete tiltag og initiativer, der sigter mod at give hele befolkningen optimale muligheder for deltagelse i fysisk aktivitet, under hensyntagen til individuelle motiver og barrierer.

8.2 Der mangler viden

Der er betydelig evidens for sundhedskonsekvenserne ved en fysisk inaktiv livsstil, mens der mangler evidens hvad angår hvilke metoder, der forebygger fysisk inaktivitet. Dette gælder såvel indsatser på individuelt niveau, såvel som på samfundsplan. Der er derfor behov for en målrettet indsats for at tilvejebringe viden om, hvilke interventer og indsatser, der er effektive.
Der mangler også viden hvad angår kendskabet til de fysiologiske mekanismer, som er ansvarlige for de negative helbredsmæssige konsekvenser af fysisk inaktivitet. En fokuseret forskningsindsats på dette område er også nødvendig.

8.3 Det individuelle og det kollektive ansvar
Hvis man ser fysisk inaktivitet som et snævert spørgsmål om selvvalgt livsstil, så udelukker man samfunds rolle. Livsstilsbetraktningen overser, at bevægelsesadfærd i høj grad er skabt af ydre rammer, herunder byplanlægning og transportsystemer. Det kollektive ansvar står ikke i kontrast til, at den enkelte person selv kan tage fat. Men kun ved at opfatte fysisk inaktivitet som et kollektivt ansvar, kan man udvikle slagkraftige og effektive løsningsmodeller, der kan forbedre alle danskeres sundhed. Den sociale ulighed i befolkningens fysiske aktivitetsvaner opfordrer til tværfaglig indsats, forskning, uddannelse, og at fysisk aktivitet tænkes ind på alle hylder – det vil kræve "det lange, seje træk". Der er brug for at tænke og prioritere fysisk aktivitet ind i byplanlægningen, på arbejdspladserne, i bygninger, i institutioner, på skoler og i hele uddannelsessystemet. Hvis man ændrer strukturenne i dagliglivet, kan det blive mere tilgængeligt at leve sundt. Borgerne skal stimuleres og motiveres til at benytte kroppen som transportmiddel.

8.4 Fysisk inaktivitet på arbejdspladsen
9. Konklusion

I begrebet fysisk aktivitet indgår fysisk aktivitet i arbejdslivet, fysisk aktivitet ved transport, fysisk aktivitet i forbindelse med hus- og havearbejde samt fysisk aktivitet i fritiden.

Der er langt fra konsensus om, hvor mange danskere der er fysisk inaktive. Dette skyldes ikke mangel på undersøgelser, men snarere manglende konsensus omkring definitioner og målemetoder.

Fysisk inaktivitet kan med rimelighed defineres som mindre end 2,5 times fysisk aktivitet pr. uge ved moderat intensitet, opnået inden for en eller flere af de ovennævnte kategorier. Denne definition er i overensstemmelse med flere internationale organisationers definition af fysisk inaktivitet og er i tråd med Sundhedsstyrelsens anbefalinger om fysisk aktivitet for voksne.

Ud fra de tilgængelige danske undersøgelser er det vanskeligt at give nøjagtige tal for, hvor stor en del af den danske befolkning der er fysisk inaktive. Dette skyldes til dels den varierende måde, hvorpå man har spurgt ind til aktivitetsvaner. Imidlertid tyder det på, at der i Danmark tegner sig det samme billede, hvor Sundhedsstyrelsen angiver, at 30-40 % af den danske befolkning er fysisk inaktive.

Til bestemmelse af fysisk aktivitet og dermed også graden af fysisk inaktivitet findes der subjektive såvel som objektive målemetoder. Der findes dog ikke enkle, hurtige og præcise målemetoder til bestemmelse af fysisk aktivitet. I større epidemiologiske studier er der typisk anvendt selvrapporteret fysisk aktivitet ved hjælp af spørgeskemaer. Der gøres imidlertid brug af en række forskellige spørgeskemaer studierne imellem, hvilket gør det umiddelbart problematisk at sammenligne resultater. Da der ved brugen af forskellige spørgeskemaer i store epidemiologiske undersøgelser er blevet fundet enslydende tendenser, anses resultater, opnået ved denne kvantitering af fysisk aktivitet, for brugbare.

Ældre udgør en speciel gruppe, som ofte har en eller flere kroniske lidelser ud over den aldersbetingede reduktion i fysisk kapacitet. I denne gruppe har fysisk inaktivitet generelt en negativ effekt i forhold til funktionsevnen. Derudover medfører selv korterevarende perioder med fysisk inaktivitet i forbindelse med sygdom og skader en øget risiko for tab af funktionsevne. Det er vist, at restitutionperioden efter en sygdomsperiode er længere hos fysisk inaktive ældre. Endelig tyder data på, at den negative konsekvens af at blive fysisk inaktiv er stærst hos de ældre, der i forvejen har mobilitetsproblemer.

Fysisk inaktivitet forekommer i forbindelse med selv relativt kortvarige sygdomme, og hos ældre øger dette risikoen for tab af funktionsevnen. Det forholder sig endvidere således, at restitutionperioden er længere hos i forvejen fysisk inaktive ældre end hos ældre, der inden sygdommen er fuldt funktionsdygtige.
Sociologiske studier har belyst, at fysisk inaktivitet følger samme mønster som den generelle sociale ulighed i sundhed, og der er således behov for effektive initiativer, der får især overvægtige, indvandrere, arbejdsløse, fattige, ældre og borgere med lavere uddannelse til at blive mere fysisk aktive. Endvidere er det i disse initiativer vigtigt at indtænke, hvorledes individet fastholdes til vedvarende deltagelse i regelmæssig fysisk aktivitet. Der er derfor behov for interventioner, der både handler om at forandre livsstil, muligheder og vilkår for at være fysisk aktiv i befolkningens nære miljø.
10. Ordliste

<table>
<thead>
<tr>
<th>Ord</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerob træning</td>
<td>Fysisk træning hvor iltoptagelsen svarer til kroppens iltvælgehov således, at energifrigørelsen foregår overvejende ved aerobe processer. Kredsløbet er indstillet på et niveau, der sikrer, at ilttilløb til de arbejdende muskler svarer til energikravet. kaldes også udførelshovedstræning, og omfatter eksempelvis løb, cykling, svømning, aerobic og langrend, hvor arbejdsintensiteten er konstant, og hvor arbejdet typisk er længerevarende.</td>
</tr>
<tr>
<td>Angina pectoris</td>
<td>Hjertekramper.</td>
</tr>
<tr>
<td>Association</td>
<td>Sammenhæng (statistisk).</td>
</tr>
<tr>
<td>Arteriovenøse iltdifferens</td>
<td>Forskellen i iltvælgehove i arterie og vene. Denne forskel er et udtryk for iltoptagelsen i det okringliggende væv.</td>
</tr>
<tr>
<td>Atrofi</td>
<td>Formidskelse af muskelvæv.</td>
</tr>
<tr>
<td>Bias</td>
<td>Betyder skævhed og er fejl ved dataindsamling, som gør, at disse ikke er objektive.</td>
</tr>
<tr>
<td>Case kontrol studie</td>
<td>Man sammenholder data fra cases, som er personer, der har udviklet sygdom med data fra kontrolpersoner, som er raske. Metodemæssige problemer: Der benyttes ofte retrospektive data med mulighed for informationsfejl, bl.a. pga. hukommelse, vanskeligt at identificere en relevant kontrolgruppe, cases kan være en selekteret gruppe og kan ikke direkte anvende risikostimulator.</td>
</tr>
</tbody>
</table>
Calisthenics
Høj-intens aerob træningsform med elementer fra styrketræning, baseret på hjemmeeøvelser uden brug af træningsredskaber. Inspireret af øvelser fra det amerikanske militær med udgangspunkt fra den stående stilling til øvelser på gulv.

Carotis arteriosklerose
Åreforkalkning af kranspulsærerne/halskarrene.

CDC
The Center of Disease Control and Prevention, indgår som en del af det amerikanske sundhedsministerium, Department of Health and Human Services.

Cochrane-review
Cochrane-databasen indeholder bl.a. opdaterede systematiske oversigter (sammenfatninger) af randomiserede kontrollerede forsøg og kliniske behandlingsresultater inden for sundhedsområdet. Oversigterne udarbejdes af Cochranes arbejdsgrupper.

Confounder
En faktor, som kan have indflydelse på både den formodede risikofaktor (årsagen) og sygdommen (virkningen). Eksempler på confoundere kan være køn, alder, fedme, rygning m.v.

Epidemiologi
Læren om sygdommes og sygdomsårsagernes forekomst og fordeling i befolkningerne, og om sammenhængen mellem sygdomsårsager og sygdom.

Ekstensormuskler
Strækkemusklerne. Strækkemusklær i benene er i hovedtræk de muskler, der strækker sig over hofte-, knæ- og fodled, og omfatter primært sæde-, lår- og lægmuskulaturen. Disse muskler bidrager bl.a. til opretholdelsen af den stående stilling.
Funktionsevnetab
Beskrives som vanskeligheder ved at udføre aktiviteter inden for alle livets områder, opfattet som forventede områder betinget af køn, alder og social situation. Funktionsevnetab betragtes under en socialmedicinsk synsvinkel som en kløft mellem individets evne og kravene fra omgivelserne.

GLUT4
Transportprotein, der transporterer glukose i skeletmuskulaturen.

Glykeret hæmoglobin (HbA1c)

Hyperinsulinæmi
Forhøjet concentration af insulin i blodet.

Hypokinesi
Reduceret aktivitet i bevægeapparatet.

Interventionsstudier
En mulig association mellem en eksponerende faktor og et bestemt udfald, bør, når det er muligt, afprøves i en interventionsundersøgelse. Her følges principperne fra den randomiserede kliniske undersøgelse (se også randomisering). I interventionsundersøgelsen gives en bestemt type behandling, f.eks. en given kost, og effekten sammenholdes med effekten hos kontrolpersoner.

Intra-individuelle
Individuelle variationer efter gentagne målinger på samme person.

Karcinogener
Betegnelse for fysiske og kemiske faktorer og stoffer eller anden påvirkning, som under visse omstændigheder kan indgå i karacinogesen (fremkaldelse af kræft).
Kohortestudier

Kondition
Kondition, eller i daglig tale konditallet, er defineret som kroppens maksimale iltoptagelse, udtrykt som ml optaget ilto pr. min. pr. kg kropsvægt.

Konfidentsinterval (CI)
Et beregnet sikkerhedsinterval omkring et middeltal, hvori det sande middeltal med 95 % sikkerhed vil ligge.

Longitudinelle studier
Gentagne målinger på individer over tid.

Maligne celler
Ondartede celler, anvendes specielt om ondartede svulster med infiltrativ vækst og metastasering.

Manifest
Åbenbar, synlig, påviselig.

Mekanostat
Den mekanisme, som muliggør, at knoglevävets arkitektur og styrke lokalt tilpasses den faktiske belastning.

Metaanalyse
En metaanalyse er en samlet systematisk og statistisk bearbejdning af mange ensartede videnskabelige undersøgelser, foretaget over samme emne.

Metformin
Antidiabetisk præparat.

Myokardieiskæmi
Utilstrækkelig eller ophævet blodgennemstrømning gennem koronararterierne i hjertet til at dække myokardiets metaboliske behov.
Observerende studier

I follow-up undersøgelser tages der udgangspunkt i ekspositionsstatus, for eksempel i ekspositionen til en given træningskomponent og sygdom eller sygdomserfaringer i de grupper, der har været mere eller mindre eksponeret til den pågældende komponent.

I case-kontrol undersøgelser tages der udgangspunkt i en gruppe syge, hvis eksponeringsforhold for eksempel til en træningsintervention sammenholdes med eksponeringsforholdene i en stikprøve fra den underliggende befolkning, hvor de syge kom fra.

I de observerende undersøgelser, såvel som i follow-up undersøgelserne, er der mulighed for, at de grupper, der selv har valgt en given eksposition, for eksempel en given træningsmængde, også adskiller sig på andre lige så eller mere betydelige områder end træningen.

Odds Ratio

Odds for et uønsket udfald i behandlingen differeret med odds i kontrolgruppen. Eksempel: Hvis Odds Ratio for brug af folsyre efter anbefalingen, f.eks. er 1,96 for højtuddannede, betyder det, at sandsynligheden (udtrykt ved odds) for, at personen har fulgt anbefalingen er 96 % større for højtuddannede i forhold til sammenligningsgruppen.

Osteoblast

Knoglecelle, den knogledannede celle, der syntetiserer og udkiller organisk knoglesubstans.

Osteocytter

Den egentlige knoglecelle, opstået fra osteoblast, som under knogledannelsen ”indfanges” af det nydannede knoglevæv. Osteocytter er i stand til at nedbryde knoglevæv i cellens umiddelbare nærhed, hvorfor de spiller en vigtig rolle i calciumreguleringen.
Postmenopausale
Efter definitiv standsning af menstruationerne ved ophør af den forpltningsdygtige alder i reglen i 45-55-års-alderen.

P-værdi
P-værdien er et statistisk mål for sandsynligheden af, at resultaterne i en undersøgelse kunne være opstået tilfældigt. Almindeligvis anses en p-værdi på 0,05 (5 %) eller derunder som statistisk signifikant.

Præmatur mortalitet
For tidlig død.

Randomiserede design
Random betyder tilfældig. Formålet med randomisering af at sikre, at der ikke er nogen eller noget, der har indflydelse på, om en givet forsøgsperson kommer i den ene eller den anden gruppe, for erfaringen viser, at det let medfører forskelle mellem grupperne.

Rejse-sætte-sig test
Stolerejsning, dvs. at rejse sig og sætte sig på en stol. Testen findes i flere varianter: Tidsforbrug ved 5 stolerejsninger, tidsforbrug ved 10 stolerejsninger og antal stolerejsninger i løbet af 30 sekunder (Chair Stand Test).

Rekonvalescens
At genvinde kræfter efter sygdom.

Relativ risiko
Relativ risiko er risikoen for et uønsket udfald af behandlingsgruppen divideret med risikoen i kontrolgruppen.

Rheumatoid arthritis
Ledegigt.

Sekundær amenorré
Manglende menstruation af over 1⁄2 års varighed, dvs. manglende menstruation efter at denne tidligere har været til stede.

Synovitis
Betændelse i ledens synovialmembran (ledkapsel).

Tarmkræft
Dækker både tyktarmstræft og endetarmskræft.

Tibiafraktur
Brud på skinnebensknoglen.
<table>
<thead>
<tr>
<th>Tværsnitsundersøgelser</th>
<th>I en tværsnitsundersøgelse undersøges forekomsten af en tilstand, sygdom eller andre karakteristika i en veldefineret population.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyktarmsmotilitet</td>
<td>Bevægelser i tarmen (tyktarmen).</td>
</tr>
<tr>
<td>Valideringsstudier</td>
<td>Studier, hvis formål er at sammenligne forskellige måle-metoder.</td>
</tr>
</tbody>
</table>
11. Referencer

58. Brage S. Objective monitoring of physical activity in the epidemiological setting using accelerometry and heart rate monitoring Institute of Public Health, University of Cambridge, UK; 2006.

175. Thune I, Smeland S. [Is physical activity important in treatment and rehabilitation of cancer patients?]. Tidsskr Nor Laegeforen 2000;120:3302-4.

266. Lange P, Vestbo J. Obstruktive lungesygdomme. Medicinsk kompendium. 15. ed. 2 A.D.

Bilag 1. Idékatalog

I det følgende opstilles en række idéer og initiativer, der kan fremme og motivere til befolkningens deltagelse i fysisk aktivitet. Disse idéer og initiativer er delt op i områderne transport, byens infrastruktur, fysisk aktivitet på arbejdspladsen, hvad man kan gøre i kommunalt regi samt initiativer på ældreområdet. Idéerne er opstået under arbejdsgruppens arbejde med nærværende rapport, og det understreges at ingen af disse er evidensbaserede. Endvidere bør der foretages en evaluering af disse idéer.

Transport
- Der bør være skattemæssige fordele ved at benytte cyklen som transportmiddel til og fra arbejde, eksempelvis som skattefradrag pr. kilometer.
- Der bør iværksættes oplysningskampagner, der oplyser om fordelene ved at benytte en aktiv transportform, der fremmer sundheden samt oplyser om ulemper ved at bruge bilen.
- Idéen om at hele eller dele af transportvejen til og fra arbejde/skole kan udføres som aktiv transport skal formidles ud til alle i befolkningen, med særligt fokus på socialgruppe 5, herunder bl.a. etniske minoriteter og overvægtige.
- I landregioner bør den ikke-motoriserede trafik adskilles fra den motoriserede trafik ved at anlægge særlige cykel- og gangstier.
- I byregioner bør man i byplanlægningen prioritere cykelstier og løsninger, der generelt sigter mod at beskytte cyklisterne.
- Der bør være mulighed for at benytte gratis bycykler. Eksempelvis så personer der benytter tog/bus, kan tage en bycykel det sidste stykke vej til og fra arbejdspladsen.
- Der bør udarbejdes lokale cykelkort og kort over gang- og løbestier. Disse skal være oplyst om aftenen så det bliver muligt at motionere når det er mørkt. Dette er særligt hensigtsmæssigt i de mørke vintermåneder hvor der kun er få timers dagslys.
- Der bør opsættes kilometersten på disse cykel- og løbestier, således at man kan måle den distance, der tilbagelægges. Dette kan styrke motivationen til vedholdenhed og bidrage til at måle træningsfrekvens og præstationsforbedringer.
- I byer bør der etableres bilfri zoner.
- Der bør etableres landsdækkende skridttællerprojekter, hvor målet bl.a. er at gå minimum 10.000 skridt pr. dag.
Byens infrastruktur
- I forbindelse med byplanlægningen, bør der gennemføres arkitektkonkurrencer, hvor der i opgaveformuleringen indgår krav til arkitektur om muligheder for fysisk aktivitet.
- Der bør etableres gang- og løbestier som er oplyste i byens parker og grønne områder. Disse skal være sikre og let tilgængelige.
- Der bør etableres offentlige boldbaner, der tilgængelige for alle og som er oplyste om afhængen.
- I vintermånederne bør der etableres skøjtebaner, der er oplyste om aftenen.
- Byens mange rum bør udnyttes til f.eks. street-basket, rullehockey, skateboard. Disse moderne aktivitetsformer skal bl.a. appellere til den yngre del af befolkningen.
- Alle skal opfordres til at tage trappen frem for elevatoren/rulletrapper, eksempelvis ved at skilte med at elevatorer og rulletrapper er forbeholdt handicappede eller gangbesværede, i stil med parkeringspladser kun for handicappede.
- De enkelte kommuner kan markedsføre sig selv som ”grøn kommune /by”.

Fysisk aktivitet på arbejdspladsen
- På arbejdspladserne bør der iværksættes informationskampagner, udarbejdes informationsfoldere og afvikles informationsmøder om fysisk aktivitets betydning for helbred og velvære. Fokus skal også rettes mod nyansatte medarbejdere.
- Der kan afholdes fyraftensmøder, hvor medarbejderne får mulighed for at blive introduceret til nye motionsformer eller får mulighed for at besøge lokale idrætsforeninger og klubber.
- Der bør jævnligt udsendes personaleblad/nyhedsbrev til medarbejdere med information om motionstilbud. Der kan informeres om motionstilbud via arbejdspladsens intranet.
- Alle arbejdspladser bør formulere og implementere en medarbejderpolitik der bl.a. omhandler fysisk aktivitet og motion for personale.
- Arbejdet bør planlægges og organiseres, så der skabes mulighed for øget fysisk aktivitet, der ikke er belastende. Herunder skal der tages forskellige individuelle hensyn til bl.a. arbejdstider og typer af arbejde.
- Arbejdspladsen bør udarbejde og implementere procedure for, hvorledes man kan give den enkelte mulighed for støtte og motivation til at komme i gang med fysisk aktivitet.
- Arbejdspladsens personaleforening bør motiveres til at give eller forhandle rabat hos motionscentre, idrætscentre mv. i nærheden af arbejdspladsen.
- Arbejdspladsen bør tilbyde de ansatte et årligt sundhedsstjek, med bl.a. fysiske tests og motiverende samtaler med fagpersoner der har kompetencer inden for området.
- Arbejdspladsen bør etablere tilbud om fysisk aktivitet, som eksempelvis pausegymnastik, dans, indretning af træningsrum og/eller fitnesscentre med uddannede instruktører.
- Arbejdspladsen bør tage initiativ til deltagelse i motionskampagner og motionsarrangementer for virksomheder. Dette kan eksempelvis være DHL-staffet, Vi Cykler Til Arbejde-kampagnen og Vi Motionerer På Arbejdspladsen-kampagnen.
- Der kan indføres såkaldte walk-and-talk-møder, hvor møder helt eller delvist afvikles under en gåtur i nærområdet.
- Der kan etableres en frokost-sti, som giver mulighed for at gå en længere vej til kantine og fælleslokaler, eller giver mulighed for at gå en tur inden og/eller efter frokosten.
- Arbejdspladsen skal etablere gode omklædnings- og badefaciliteter samt tilgængelige cykelstativer, så det bliver mere attraktivt for medarbejdere at benytte cykel til og fra arbejde.
- Arbejdet i sikkerhedsgrupper og udvalg skal omfatte en større aktiv rolle med hensyn til at informere om sund fysisk aktivitet og sikre forebyggende fysisk aktivitet på arbejdspladsen.
- Der bør udarbejdes et idékatalog, hvor den enkelte arbejdsplads kan hente inspiration og finde samarbejdspartnere, der kan medvirke til at fremme fysisk aktivitet på arbejdspladsen.

Kommunen

- Kommunen bør yde økonomisk tilskud til kontingenter i idrætsforeninger og motionscentre, specielt til økonomisk dårligt stillede familier. Dette kan også være i form af rabatordninger til eksempelvis svømmehaller.
- Der bør iværksættes systematisk undervisning i betydningen af fysisk aktivitet til alle oftefentligt ansatte, herunder dagplejere, pædagoger, lærere m.fl.
- Der bør være særlig opmærksomhed på, at der kan være behov for en målrettet indsats over for etniske grupper.
- Kommunen bør sikre at der er flere tilbud om organiseret regelmæssig fysisk aktivitet i fritiden.
- Der bør udvikles en politik for samarbejde med frivillige idrætsorganisationer og foreninger.
- Der bør inkluderes fysisk aktivitet i tvæرفaglige projekter.

De ældre

- Der bør iværksættes kampanger og informationsmateriale der skal forsøge at ændre holdningen til og hos de ældre, om at det er naturligt, at de bliver skrøbelige.
- De ældre bør stimuleres til fortsat aktivitet og til at bryde den onde cirkel med fysisk inaktivitet.
- Der bør etableres samarbejde med de frivillige organisationer og foreninger omkring vari-erede motionstilbud til ældre. Dette kan eksempelvis være som motionsvenner og særlig ældregymnastik.
- Der bør ydes tilskud til ældreidræt efter folkeoplysningsloven.
- De eksisterende tilbud om fysisk aktivitet for ældre skal kortlægges. Denne viden skal formidles ud til borgere, praktiserende læger og sundhedspersonale.
- Det personale i kommunen, der er i kontakt med de ældre borgere, bør uddannes så de kan stimulere og motivere til deltagelse i fysisk aktivitet.
- Der bør udbredes kendskab til styrketræning, som nemt og med simple redskaber, herunder træningselastik, kan udføres i hjemmet. I samme forbindelse skal det instrueres i faldforebyggelse.
- Der bør etableres flere tilbud om fysisk aktivitet på plejehjemmene, eksempelvis som det fysisk aktive plejehjem, hvor forskellige former for fysisk aktivitet medtænkes i arkitektur og indretning, og hvor fysisk aktivitet på forskellige niveauer indgår i den daglige rutine.
- Der bør benyttes screeningsmetoder til at identificere de ældre, der har en begyndende reduktion i funktionsevne, og rådgive omkring hvilke aktivitetsmuligheder, der findes i nærområdet, specifikt til dem.
- Der bør etableres partnerskaber med fitnesscentre med henblik på favorable medlemskaber til ældre borgere, der træner i lav-aktivitets perioder. Derudover kunne der i centrene etableres motion-på-recept tilbud, hvor ældre efterfølgende kan fortsætte som almindelige brugere eller deltage på specialhold.
- Der bør være mulighed for at købe billetter, eksempelvis på biblioteker og apoteker, som giver adgang til deltagelse på åbne motionshold.
- Der bør etableres sociale aktiviteter, der inddrager fysisk aktivitet, for de svageste ældre samt ældre, der ikke ønsker at deltage på deciderede træningshold.
- Der bør etableres tilbud om fysisk aktivitet til ældre fra forskellige etniske minoritetsgrupper.
- Der bør udbredes kendskab til fysisk aktivitet, der kan udføres under indlæggelse på hospital og forebygge faldende kondition og muskelstyrke under indlæggelse.
- Der bør sikres hurtig genoptræning af ældre, så de hurtigst muligt genvinder samme (eller højere) funktionsniveau, som før sygdommen/skaden.
- Der bør etableres korterevarende uddannelsesprogrammer på forskellige niveauer (med evaluering og certificering), der giver mulighed for at være instruktør på motionshold for raske ældre og ældre med komorbidity.
Bilag 2. Interessekonflikterklæring - I relation til den aktuelle rapport

Dækkende perioden 2005 – 2007

| Professor, dr.scient., ph.d. Bente Kiens |
| (formand) |
| Afdeling for HumanFysiologi |
| Institut for Idræt |
| Københavns Universitet |
| |
| Har bl.a. via EU-rammeprogram forskningssamarbejde |
| med Unilever UK, Rheoscence og AstraZeneca. |
| Tillidsposter/repræsentation i følgende rådgivende |
| organer: Dansk Selskab for Fysisk Aktivitet og Sundhed |
| |
| Seniorforsker, fysioterapeut, |
| ph.d. Nina Beyer |
| Fysioterapien |
| Bispebjerg Hospital |
| |
| Konsulentopgaver: Dansk Arbejder Idrætsforbunds |
| projekt ”Stol på Idræt”. |
| Tillidsposter/repræsentation i følgende rådgivende |
| organer: Dansk Selskab for Fysisk Aktivitet og Sundhed,|
| Dansk Gerontologisk Selskab og Gigtforeningens Udvik-|
| lingspulje. |
| Royalty: Populærvidenskabelig bog og diverse populær-|
| videnskabelige bogkapitler |
| Andet: Foredragsholder på kongresser, symposier og |
| møder samt populærvidenskabelige møder, som kan |
| være helt eller delvist sponsoreret af firmaer og i andre |
| tilfælde af offentlige midler, f.eks. kommuner. |
| |
| Forsker, cand.scient., M.Phil., |
| ph.d. Søren Brage |
| 1. MRC Epidemiology Unit, Cambridge, |
| UK og |
| 2. Ekstern lektor, Institut for Idræt og |
| Biomekanik, SDU, Odense |
| |
| Konsulentopgaver: Konsulent for Life Systems Inc., |
| Boulder, Colorado, USA: Datafortolkning af accelerome-|
| ter og pulsmålinger. |
| |
| Overlæge, dr.med. Lars Hyldstrup |
| Endokrinologisk Afdeling, |
| Hvidovre Hospital |
| |
| Forskningsstøtte, herunder ph.-d-projekter med hel|
| eller delvis industriefinansiering: Lilly-Danmark, Pfizer, |
| Roche, Novartis, Novo Nordisk. |
| Konsulentopgaver: Lilly-Danmark, Nycomed, Roche, |
| Novartis, Biogen-IDEC, Prescriba, Novo Nordisk. |

147
<table>
<thead>
<tr>
<th>Name</th>
<th>Title and Affiliation</th>
<th>Royalty</th>
<th>Description</th>
</tr>
</thead>
</table>